Half-Micron LOCOS Isolation Using High Energy Ion Implantation

Koji SUZUKI  Kazunobu MAMENO  Hideharu NAGASAWA  Atsuhiro NISHIDA  Hideaki FUJIWARA  Kiyoshi YONEDA  

IEICE TRANSACTIONS on Electronics   Vol.E75-C    No.9    pp.972-977
Publication Date: 1992/09/25
Online ISSN: 
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Issue on Silicon Devices and Materials)
ion implantation,  LOCOS,  isolation,  channel stop,  ITF,  

Full Text: PDF(519.5KB)>>
Buy this Article

A new channel stop design for submicton local oxidation of silicon (LOCOS) isolation was presented. The n-channel stop was designed with boron implanation after forming LOCOS, while the p-channel stop was constructed with high energy phosphorus or arsenic implantation before or after forming LOCOS. These optimized channel stop designs can extend an isolation spacing to the submicron region without a decrease in junction breakdown voltage and an increase in junction leakage current. Narrow channel effects were found to be effectively suppressed by optimum channel stop design issues.