Design and Evaluation of Highly Prallel VLSI Processors for 2-D State-Space Digital Filters Using Hierarchical Behavioral Description Language and Synthesizer

Masayuki KAWAMATA  Yasushi IWATA  Tatsuo HIGUCHI  

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E75-A   No.7   pp.837-845
Publication Date: 1992/07/25
Online ISSN: 
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on Multidimensional Signal Processing)
Category: Design and Implementation of Multidimensional Digital Filters
two dimensional state-space digital filters,  VLSI processors,  distributed arithmetic,  behavioral description language,  logic synthesizer,  

Full Text: PDF(685.8KB)>>
Buy this Article

This paper designs and evaluates highly parallel VLSI processors for real time 2-D state-space digital filters using hierarchical behavioral description language and synthesizer. The architecture of the 2-D state-space digital filtering system is a linear systolic array of homogeneous VLSI processors, each of which consists of eight processing elements (PEs) executing 1-D state-space digital filtering with multi-input and multi-output. Hierarchical behavioral description language and synthesizer are adopted to design and evaluate PE's and the VLSI processors. One 16 bit fixed-point PE executing a (4, 4)-th order 2-D state-space digital filtering is described on the basis of distributed arithmetic in about 1,200 steps by the description language and is composed of 15 K gates in terms of 2 input NAND gate. One VLSI processor which is a cascade connection of eight PEs is composed of 129 K gates and can be integrated into one 1515 [mm2] VLSI chip using 1 µm CMOS standard cell. The 2-D state-space digital filtering system composed of 128 VLSI processors at 25 MHz clock can execute a 1,0241,024 image in 1.47 [msec] and thus can be applied to real-time conventional video signal processing.