For Full-Text PDF, please login, if you are a member of IEICE, or go to Pay Per View on menu list, if you are a nonmember of IEICE.
 Rectilinear Shortest Paths in a Rectilinear Simple PolygonTetsuo ASANO  Publication IEICE TRANSACTIONS (1976-1990)   Vol.E69   No.6   pp.750-758Publication Date: 1986/06/25Online ISSN:  DOI: Print ISSN: 0000-0000Type of Manuscript: PAPERCategory: Algorithm, Computational ComplexityKeyword: Full Text: PDF(740KB)>> Buy this Article Summary:  We consider the following two fundamental problems: (P1) We are given a rectilinear simple polygon P with n edges and a point s in its interior. Given a query point t in the interior of P, find a rectilinear shortest path between s and t. (P2) We are given a rectilinear simple polygon P with n edges. Given a query point pair (s,t) in the interior of P, find a rectilinear shortest path between s and t. For the problem P1, we present an efficient algorithm which works in O(log n+L) query time and O(n log n) preprocessing time, where L is the number of line segments in the shortest path. Another important thing is that the shortest path obtained by the algorithm is of the minimum bends among all the paths between the two points. If only the distance between s and t is needed, then O(log n) time is enough for the query. On the other hand, for the problem P2, O(n) query time is needed while the preprocessing time is the same. Based on the algorithms, it is shown that given m points in a rectilinear n-edge simple polygon we can compute the distance between every pair of points in O(m(m+n)+nlog n) time.