A Double Adversarial Network Model for Multi-Domain and Multi-Task Chinese Named Entity Recognition

Yun HU  Changwen ZHENG  

IEICE TRANSACTIONS on Information and Systems   Vol.E103-D   No.7   pp.1744-1752
Publication Date: 2020/07/01
Online ISSN: 1745-1361
DOI: 10.1587/transinf.2019EDP7253
Type of Manuscript: PAPER
Category: Natural Language Processing
Chinese named entity recognition,  multi-domain learning,  multi-task learning,  

Full Text: PDF(933.7KB)>>
Buy this Article

Named Entity Recognition (NER) systems are often realized by supervised methods such as CRF and neural network methods, which require large annotated data. In some domains that small annotated training data is available, multi-domain or multi-task learning methods are often used. In this paper, we explore the methods that use news domain and Chinese Word Segmentation (CWS) task to improve the performance of Chinese named entity recognition in weibo domain. We first propose two baseline models combining multi-domain and multi-task information. The two baseline models share information between different domains and tasks through sharing parameters simply. Then, we propose a Double ADVersarial model (DoubADV model). The model uses two adversarial networks considering the shared and private features in different domains and tasks. Experimental results show that our DoubADV model outperforms other baseline models and achieves state-of-the-art performance compared with previous works in multi-domain and multi-task situation.