Anomaly Detection of Folding Operations for Origami Instruction with Single Camera

Hiroshi SHIMANUKI  Toyohide WATANABE  Koichi ASAKURA  Hideki SATO  Taketoshi USHIAMA  

Publication
IEICE TRANSACTIONS on Information and Systems   Vol.E103-D   No.5   pp.1088-1098
Publication Date: 2020/05/01
Online ISSN: 1745-1361
DOI: 10.1587/transinf.2019EDP7242
Type of Manuscript: PAPER
Category: Pattern Recognition
Keyword: 
handicraft education,  origami instruction,  anomaly detection,  one-class SVM,  augmented reality (AR),  

Full Text: PDF(3.1MB)>>
Buy this Article




Summary: 
When people learn a handicraft with instructional contents such as books, videos, and web pages, many of them often give up halfway because the contents do not always assure how to make it. This study aims to provide origami learners, especially beginners, with feedbacks on their folding operations. An approach for recognizing the state of the learner by using a single top-view camera, and pointing out the mistakes made during the origami folding operation is proposed. First, an instruction model that stores easy-to-follow folding operations is defined. Second, a method for recognizing the state of the learner's origami paper sheet is proposed. Third, a method for detecting mistakes made by the learner by means of anomaly detection using a one-class support vector machine (one-class SVM) classifier (using the folding progress and the difference between the learner's origami shape and the correct shape) is proposed. Because noises exist in the camera images due to shadows and occlusions caused by the learner's hands, the shapes of the origami sheet are not always extracted accurately. To train the one-class SVM classifier with high accuracy, a data cleansing method that automatically sifts out video frames with noises is proposed. Moreover, using the statistics of features extracted from the frames in a sliding window makes it possible to reduce the influence by the noises. The proposed method was experimentally demonstrated to be sufficiently accurate and robust against noises, and its false alarm rate (false positive rate) can be reduced to zero. Requiring only a single camera and common origami paper, the proposed method makes it possible to monitor mistakes made by origami learners and support their self-learning.