Iterative Cross-Lingual Entity Alignment Based on TransC

Shize KANG  Lixin JI  Zhenglian LI  Xindi HAO  Yuehang DING  

IEICE TRANSACTIONS on Information and Systems   Vol.E103-D   No.5   pp.1002-1005
Publication Date: 2020/05/01
Online ISSN: 1745-1361
DOI: 10.1587/transinf.2019DAL0001
Type of Manuscript: Special Section LETTER (Special Section on Data Engineering and Information Management)
cross-lingual entity alignment,  ontology,  knowledge embeddings,  iterative alignment,  

Full Text: PDF(334.5KB)>>
Buy this Article

The goal of cross-lingual entity alignment is to match entities from knowledge graph of different languages that represent the same object in the real world. Knowledge graphs of different languages can share the same ontology which we guess may be useful for entity alignment. To verify this idea, we propose a novel embedding model based on TransC. This model first adopts TransC and parameter sharing model to map all the entities and relations in knowledge graphs to a shared low-dimensional semantic space based on a set of aligned entities. Then, the model iteratively uses reinitialization and soft alignment strategy to perform entity alignment. The experimental results show that, compared with the benchmark algorithms, the proposed model can effectively fuse ontology information and achieve relatively better results.