|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Dual Network Fusion for Person Re-Identification
Lin DU Chang TIAN Mingyong ZENG Jiabao WANG Shanshan JIAO Qing SHEN Guodong WU
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E103-A
No.3
pp.643-648 Publication Date: 2020/03/01 Online ISSN: 1745-1337
DOI: 10.1587/transfun.2019EAL2116 Type of Manuscript: LETTER Category: Image Keyword: attention maps, dual network, channel attention, multi-loss training,
Full Text: PDF>>
Summary:
Feature learning based on deep network has been verified as beneficial for person re-identification (Re-ID) in recent years. However, most researches use a single network as the baseline, without considering the fusion of different deep features. By analyzing the attention maps of different networks, we find that the information learned by different networks can complement each other. Therefore, a novel Dual Network Fusion (DNF) framework is proposed. DNF is designed with a trunk branch and two auxiliary branches. In the trunk branch, deep features are cascaded directly along the channel direction. One of the auxiliary branch is channel attention branch, which is used to allocate weight for different deep features. Another one is multi-loss training branch. To verify the performance of DNF, we test it on three benchmark datasets, including CUHK03NP, Market-1501 and DukeMTMC-reID. The results show that the effect of using DNF is significantly better than a single network and is comparable to most state-of-the-art methods.
|
|
|