OFR-Net: Optical Flow Refinement with a Pyramid Dense Residual Network

Liping ZHANG  Zongqing LU  Qingmin LIAO  

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E103-A   No.11   pp.1312-1318
Publication Date: 2020/11/01
Publicized: 2020/04/30
Online ISSN: 1745-1337
DOI: 10.1587/transfun.2020EAL2024
Type of Manuscript: LETTER
Category: Computer Graphics
optical flow refinement,  pyramid dense residual structure,  residual learning,  spatial correlation,  warp loss,  

Full Text: PDF>>
Buy this Article

This paper proposes a new and effective convolutional neural network model termed OFR-Net for optical flow refinement. The OFR-Net exploits the spatial correlation between images and optical flow fields. It adopts a pyramidal codec structure with residual connections, dense connections and skip connections within and between the encoder and decoder, to comprehensively fuse features of different scales, locally and globally. We also introduce a warp loss to restrict large displacement refinement errors. A series of experiments on the FlyingChairs and MPI Sintel datasets show that the OFR-Net can effectively refine the optical flow predicted by various methods.