A Fully-Connected Ising Model Embedding Method and Its Evaluation for CMOS Annealing Machines

Daisuke OKU  Kotaro TERADA  Masato HAYASHI  Masanao YAMAOKA  Shu TANAKA  Nozomu TOGAWA  

IEICE TRANSACTIONS on Information and Systems   Vol.E102-D   No.9   pp.1696-1706
Publication Date: 2019/09/01
Online ISSN: 1745-1361
DOI: 10.1587/transinf.2018EDP7411
Type of Manuscript: PAPER
Category: Fundamentals of Information Systems
CMOS annealing,  Ising model,  Ising computing,  graph embedding,  combinatorial optimization,  

Full Text: PDF(919.8KB)>>
Buy this Article

Combinatorial optimization problems with a large solution space are difficult to solve just using von Neumann computers. Ising machines or annealing machines have been developed to tackle these problems as a promising Non-von Neumann computer. In order to use these annealing machines, every combinatorial optimization problem is mapped onto the physical Ising model, which consists of spins, interactions between them, and their external magnetic fields. Then the annealing machines operate so as to search the ground state of the physical Ising model, which corresponds to the optimal solution of the original combinatorial optimization problem. A combinatorial optimization problem can be firstly described by an ideal fully-connected Ising model but it is very hard to embed it onto the physical Ising model topology of a particular annealing machine, which causes one of the largest issues in annealing machines. In this paper, we propose a fully-connected Ising model embedding method targeting for CMOS annealing machine. The key idea is that the proposed method replicates every logical spin in a fully-connected Ising model and embeds each logical spin onto the physical spins with the same chain length. Experimental results through an actual combinatorial problem show that the proposed method obtains spin embeddings superior to the conventional de facto standard method, in terms of the embedding time and the probability of obtaining a feasible solution.