|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
A Cross-Platform Study on Emerging Malicious Programs Targeting IoT Devices
Tao BAN Ryoichi ISAWA Shin-Ying HUANG Katsunari YOSHIOKA Daisuke INOUE
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E102-D
No.9
pp.1683-1685 Publication Date: 2019/09/01 Publicized: 2019/06/21 Online ISSN: 1745-1361
DOI: 10.1587/transinf.2018OFL0007 Type of Manuscript: Special Section LETTER (Special Section on Log Data Usage Technology and Office Information Systems) Category: Cybersecurity Keyword: IoT security, IoT malware, malware analysis, malware classification,
Full Text: FreePDF(1.6MB)
Summary:
Along with the proliferation of IoT (Internet of Things) devices, cyberattacks towards them are on the rise. In this paper, aiming at efficient precaution and mitigation of emerging IoT cyberthreats, we present a multimodal study on applying machine learning methods to characterize malicious programs which target multiple IoT platforms. Experiments show that opcode sequences obtained from static analysis and API sequences obtained by dynamic analysis provide sufficient discriminant information such that IoT malware can be classified with near optimal accuracy. Automated and accelerated identification and mitigation of new IoT cyberthreats can be enabled based on the findings reported in this study.
|
|