Throughput Maximization of UAV-Enabled Wireless Network in the Presence of Jammers: Joint Trajectory and Communication Design

Yang WU  Weiwei YANG  Di ZHANG  Xiaoli SUN  

IEICE TRANSACTIONS on Communications   Vol.E102-B   No.10   pp.1983-1990
Publication Date: 2019/10/01
Online ISSN: 1745-1345
DOI: 10.1587/transcom.2018DRP0034
Type of Manuscript: Special Section PAPER (Special Section on Exploring Drone for Mobile Sensing, Coverage and Communications: Theory and Applications)
unmanned aerial vehicle,  trajectory optimization,  jammer,  

Full Text: PDF(1.7MB)>>
Buy this Article

Unmanned aerial vehicle (UAV) communication has drawn rising interest recently with the distinctive gains brought by its inherent mobility. In this paper, we investigate the throughput maximization problem in UAV-enabled uplink communication, where multiple ground nodes communicate with a UAV while a group of ground jammers send jamming signals to jam the communications between UAV and the ground nodes. In contrast to the previous works that only considering UAV's transmit power allocation and two-dimension (2D) trajectory design, the ground nodes' transmit power allocation and scheduling along with the UAV's three-dimensional (3D) trajectory design are jointly optimized. The formulated throughput maximization problem is a mixed-integer non-convex programme that hard to be solved in general. Thus, we propose an iterative algorithm to make the problem trackable by applying the block coordinate descent and successive convex optimization techniques. Simulation results show that our proposed algorithm outperforms the benchmark methods that improving the throughput of the system significantly.