|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Reward-Based Exploration: Adaptive Control for Deep Reinforcement Learning
Zhi-xiong XU Lei CAO Xi-liang CHEN Chen-xi LI
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E101-D
No.9
pp.2409-2412 Publication Date: 2018/09/01 Publicized: 2018/06/18 Online ISSN: 1745-1361
DOI: 10.1587/transinf.2018EDL8011 Type of Manuscript: LETTER Category: Artificial Intelligence, Data Mining Keyword: deep reinforcement learning, reward, exploration, exploitation,
Full Text: PDF>>
Summary:
Aiming at the contradiction between exploration and exploitation in deep reinforcement learning, this paper proposes “reward-based exploration strategy combined with Softmax action selection” (RBE-Softmax) as a dynamic exploration strategy to guide the agent to learn. The superiority of the proposed method is that the characteristic of agent's learning process is utilized to adapt exploration parameters online, and the agent is able to select potential optimal action more effectively. The proposed method is evaluated in discrete and continuous control tasks on OpenAI Gym, and the empirical evaluation results show that RBE-Softmax method leads to statistically-significant improvement in the performance of deep reinforcement learning algorithms.
|
|