A Simple and Effective Generalization of Exponential Matrix Discriminant Analysis and Its Application to Face Recognition

Ruisheng RAN  Bin FANG  Xuegang WU  Shougui ZHANG  

Publication
IEICE TRANSACTIONS on Information and Systems   Vol.E101-D   No.1   pp.265-268
Publication Date: 2018/01/01
Publicized: 2017/10/18
Online ISSN: 1745-1361
DOI: 10.1587/transinf.2017EDL8198
Type of Manuscript: LETTER
Category: Pattern Recognition
Keyword: 
matrix exponential,  linear discriminant analysis,  the small sample size problem,  face recognition,  

Full Text: PDF(417.8KB)>>
Buy this Article




Summary: 
As an effective method, exponential discriminant analysis (EDA) has been proposed and widely used to solve the so-called small-sample-size (SSS) problem. In this paper, a simple and effective generalization of EDA is presented and named as GEDA. In GEDA, a general exponential function, where the base of exponential function is larger than the Euler number, is used. Due to the property of general exponential function, the distance between samples belonging to different classes is larger than that of EDA, and then the discrimination property is largely emphasized. The experiment results on the Extended Yale and CMU-PIE face databases show that, GEDA gets more advantageous recognition performance compared to EDA.