
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

On CorrectionBased Iterative Methods for Eigenvalue Problems
Takafumi MIYATA
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E101A
No.10
pp.16681675 Publication Date: 2018/10/01 Online ISSN: 17451337
DOI: 10.1587/transfun.E101.A.1668 Type of Manuscript: PAPER Category: Numerical Analysis and Optimization Keyword: numerical analysis, eigenvalue and eigenvector, iterative method, correction equation,
Full Text: PDF>>
Summary:
The JacobiDavidson method and the Riccati method for eigenvalue problems are studied. In the methods, one has to solve a nonlinear equation called the correction equation per iteration, and the difference between the methods comes from how to solve the equation. In the JacobiDavidson/Riccati method the correction equation is solved with/without linearization. In the literature, avoiding the linearization is known as an improvement to get a better solution of the equation and bring the faster convergence. In fact, the Riccati method showed superior convergence behavior for some problems. Nevertheless the advantage of the Riccati method is still unclear, because the correction equation is solved not exactly but with low accuracy. In this paper, we analyzed the approximate solution of the correction equation and clarified the point that the Riccati method is specialized for computing particular solutions of eigenvalue problems. The result suggests that the two methods should be selectively used depending on target solutions. Our analysis was verified by numerical experiments.

