Interdisciplinary Collaborator Recommendation Based on Research Content Similarity

Masataka ARAKI  Marie KATSURAI  Ikki OHMUKAI  Hideaki TAKEDA  

IEICE TRANSACTIONS on Information and Systems   Vol.E100-D   No.4   pp.785-792
Publication Date: 2017/04/01
Online ISSN: 1745-1361
DOI: 10.1587/transinf.2016DAP0030
Type of Manuscript: Special Section PAPER (Special Section on Data Engineering and Information Management)
interdisciplinary research,  collaborator recommendation,  academic database analysis,  

Full Text: PDF(916.4KB)>>
Buy this Article

Most existing methods on research collaborator recommendation focus on promoting collaboration within a specific discipline and exploit a network structure derived from co-authorship or co-citation information. To find collaboration opportunities outside researchers' own fields of expertise and beyond their social network, we present an interdisciplinary collaborator recommendation method based on research content similarity. In the proposed method, we calculate textual features that reflect a researcher's interests using a research grant database. To find the most relevant researchers who work in other fields, we compare constructing a pairwise similarity matrix in a feature space and exploiting existing social networks with content-based similarity. We present a case study at the Graduate University for Advanced Studies in Japan in which actual collaborations across departments are used as ground truth. The results indicate that our content-based approach can accurately predict interdisciplinary collaboration compared with the conventional collaboration network-based approaches.