|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Error Recovery for Massive MIMO Signal Detection via Reconstruction of Discrete-Valued Sparse Vector
Ryo HAYAKAWA Kazunori HAYASHI
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E100-A
No.12
pp.2671-2679 Publication Date: 2017/12/01 Online ISSN: 1745-1337
DOI: 10.1587/transfun.E100.A.2671 Type of Manuscript: Special Section PAPER (Special Section on Information Theory and Its Applications) Category: Communication Theory and Systems Keyword: massive MIMO, signal detection, sum-of-absolute-value optimization, restricted isometry property,
Full Text: PDF>>
Summary:
In this paper, we propose a novel error recovery method for massive multiple-input multiple-output (MIMO) signal detection, which improves an estimate of transmitted signals by taking advantage of the sparsity and the discreteness of the error signal. We firstly formulate the error recovery problem as the maximum a posteriori (MAP) estimation and then relax the MAP estimation into a convex optimization problem, which reconstructs a discrete-valued sparse vector from its linear measurements. By using the restricted isometry property (RIP), we also provide a theoretical upper bound of the size of the reconstruction error with the optimization problem. Simulation results show that the proposed error recovery method has better bit error rate (BER) performance than that of the conventional error recovery method.
|
|