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Estimation of the Matrix Rank of Harmonic Components of a
Spectrogram in a Piano Music Signal Based on the Stein’s Unbiased
Risk Estimator and Median Filter

Seokjin LEE†a), Member

SUMMARY The estimation of the matrix rank of harmonic compo-
nents of a music spectrogram provides some useful information, e.g., the
determination of the number of basis vectors of the matrix-factorization-
based algorithms, which is required for the automatic music transcription
or in post-processing. In this work, we develop an algorithm based on
Stein’s unbiased risk estimator (SURE) algorithm with the matrix factor-
ization model. The noise variance required for the SURE algorithm is
estimated by suppressing the harmonic component via median filtering.
An evaluation performed using the MIDI-aligned piano sounds (MAPS)
database revealed an average estimation error of −0.26 (standard deviation:
4.4) for the proposed algorithm.
key words: automatic music transcription, nonnegative matrix factoriza-
tion, number of bases estimation, Stein’s unbiased risk estimator

1. Introduction

Automatic music transcription (AMT), which is the pro-
cess of automatically converting a music signal into mu-
sical notation, is one of the key challenges in music in-
formation retrieval. Smaragdis and Brown introduced a
transcription algorithm based on the nonnegative matrix
factorization [1], which has been successfully implemented
for polyphonic music transcription; several spectrogram-
factorization-based algorithms have also been recently de-
veloped [2]–[4].

The spectrogram-factorization-based algorithms ex-
hibit relatively good performance in solving multiple fun-
damental frequency estimation problems, but the perfor-
mances of the algorithms are affected by the number of ba-
sis vectors [1]. If the number of basis vectors is set to a
smaller or larger value than the actual number of note events
(including notes and chords), the algorithm may fail and
miss several notes. This can lead to errors, such as confus-
ing the harmonic partials for additional notes [1], [4]. The
factorization-based algorithm exhibits the best performance
when the number of basis vectors and the number of note
events in the music signal are identical [1]. Some algorithms
that use a pre-trained frequency basis are immune to this
problem, but the unsupervised algorithms still require the
number of basis vectors. Recent matrix factorization meth-
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ods control the number of basis vectors [5] or choose the
relevant basis vectors [6], but the algorithms are designed
for specific factorization algorithms.

The factorization-based AMT algorithm decomposes a
magnitude spectrogram of harmonic components into mul-
tiplications of matrices and, hence, the number of basis vec-
tors is related to the matrix rank of the harmonic compo-
nents. In this paper, a method is developed for estimating
the matrix rank of harmonic components of a spectrogram.
The proposed algorithm is based on Stein’s unbiased risk
estimator (SURE) algorithm [7]. The SURE algorithm re-
quires the noise variance as an a priori knowledge, so the
proposed algorithm calculates the variance of non-harmonic
components via median filtering [8].

The contributions of this work are two-fold: the SURE
algorithm is applied to the NMF model; a noise variance es-
timation algorithm is proposed for the SURE method. The
development of the SURE algorithm (Sect. 2.) is based
on [7], but in our case Stein’s lemma (4) is applied clearly.
Although slight, this difference can help to extend the algo-
rithm to non-Gaussian noise cases in the future.

2. Spectrogram Model and Rank Estimation

Lee and Seung [9] established the nonnegative matrix fac-
torization (NMF) model, which is described by

V =WH + E � V0 + E (1)

where V, W, and H are nonnegative matrices with sizes
of K × N, K × R, and R × N, respectively. According to
Smaragdis and Brown [1], each basis vector of factorized
matrices W and H corresponds to a note or a chord, as
shown in Fig. 1, when the nonnegative matrix V is a mag-
nitude of the spectrogram of a music signal. Therefore, the

Fig. 1 An illustrative diagram for the NMF model in the music signal
analysis.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



LETTER
2277

number of basis vectors of the NMF model can be deter-
mined by estimating the rank of V0 in a noisy environment.

Equation (1) can be rewritten as

v(n) =Wh(n) + e(n) = v0(n) + e(n) (2)

where v(n), v0(n), h(n), and e(n) are the n-th columns of V,
V0, H, and E, respectively. The SURE method chooses the
model order R, which is equal to the number of column vec-
tors comprising matrix W, which minimizes the risk func-
tion [7]

RR = E‖v0(n) − v̂0(n)‖2
= E‖e(n) − ê(n)‖2
= E‖ê(n)‖2 − 2E(êT (n)e(n)) + Kσ2

e (3)

where ê(n) = v(n) − v̂0(n), v̂0(n) is the estimation of v0(n),
and σ2

e is the variance of e(n).
If we assume that e(n) has a zero-mean Gaussian dis-

tribution with a variance of σ2
e IK , then we can use Stein’s

lemma. Stein’s lemma states that random vector Y , which
has Gaussian distributions, satisfies [10]

tr {Cov(Y, f (Y))} = σ2
Y E

{
tr

(
∂ f (Y)
∂Y

)}
, (4)

where f (Y) is an arbitrary differentiable function. We use e
and ê (omitting the time index n for convenience) instead of
Y and f (Y), respectively, then (4) becomes

E
(
êT e

)
= σ2

e E

{
tr

(
∂ê
∂eT

)}

= σ2
e

[
K − E

{
tr

(
∂v̂0

∂vT

)}]
, (5)

because e = v − v0 and ê = v − v̂0.
Therefore, the risk function RR becomes

RR = E‖ê‖2 − 2E(êT e) + Kσ2
e

= E‖ê‖2 − 2

[
Kσ2

e − σ2
e E

{
tr

(
∂v̂0

∂vT

)}]
+ Kσ2

e

= E‖ê‖2 + 2σ2
e E

{
tr

(
∂v̂0

∂vT

)}
− Kσ2

e . (6)

If we assume that the processes are ergodic, we may use the
time average instead of the ensemble average as

RR=
1
N

N∑
n=1

‖v(n)−v̂0(n)‖2 + 2σ2
e

N

N∑
n=1

tr

(
∂v̂0(n)
∂vT (n)

)
−Kσ2

e (7)

Because R is identical to the rank of V0 as shown in
Fig. 1, we apply the rank estimation method in the noisy
principal component analysis (PCA). According to previous
studies considering the noisy PCA, the R-rank components
v0 can be estimated by R eigenvectors as follows [7]

v̂0(n) =
R∑

j=1

p j
l j − σ̂2

R

l j
pT

j v(n) (8)

where l j is the j-th eigenvalue, and p j is the j-th eigenvector
of (1/N)

∑N
n=1 v(n)vT (n). σ̂2

R can be calculated as [7]

σ̂2
R =

1
K − R

K∑
j=R+1

l j. (9)

The partial derivative of (8) is calculated as

∂v̂0(n)
∂vT (n)

=

R∑
j=1

( ∂p j

∂vT (n)
d jpT

j v(n) + p j
∂d j

∂vT (n)
pT

j v(n)

+ p jd jpT
j + p jd jv(n)

∂p j

∂vT (n)

)
(10)

where dj = (l j − σ̂2
R)/l j.

According to the theorem regarding the derivatives of
eigenvectors, the partial derivatives of the eigenvectors and
eigenvalues are calculated as [7]:

∂p j

∂vT (n)
=

1
N

∑
i� j

(
pT

j z(n)
)

pipT
i +

(
pT

i z(n)
)

pipT
j

l j − li
, (11)

∂l j

∂vT (n)
=

2
N

vT (n)p jpT
j , (12)

tr

(
∂p j

∂vT (n)

)
=

1
N

∑
i� j

pT
j v(n)

l j − li
. (13)

Using (10), (12), and (13), (7) becomes (see the details
in the appendix)

RR = (K − R)σ̂2
R +

R∑
j=1

σ̂4
R

l j
+ 2σ2

eR − 2σ2
eσ̂

2
R

R∑
j=1

1
l j

+
4σ2

eσ̂
2
R

N

R∑
j=1

1
l j
+

2σ2
e

N

R∑
j=1

d j

∑
i� j

l j + li
l j − li

− Kσ2
e . (14)

By dropping the parts that do not depend on R, we obtain

RR = (K − R)σ̂2
R +

R∑
j=1

σ̂4
R

l j
+ 2σ2

eR − 2σ2
eσ̂

2
R

R∑
j=1

1
l j

+
4σ2

eσ̂
2
R

N

R∑
j=1

1
l j
+

2σ2
e

N

R∑
j=1

d j

∑
i� j

l j + li
l j − li

. (15)

Every variable on the right-hand side of (15) can be calcu-
lated from the eigenvalues except for the noise variance σ2

e .
The σ2

e can be estimated from the random matrix theory [7],
but this theory considers the general noise, rather than the
error of the NMF model for AMT. Therefore, a new method
is proposed for estimating σ2

e in the next section.
Unfortunately, the assumption that e has a Gaussian

distribution is not strictly satisfied. The distribution of e is
more similar to the Laplacian than the Gaussian. However,
direct development of the SURE function for the Laplacian
is quite difficult. Therefore, we use the Gaussian assumption
like the other SURE-based method [7]. The SURE-based
method based on the Laplacian will be considered in future
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Fig. 2 Magnitude spectrum of a frame from a piano music signal. Upper
half: original spectrum. Lower half: spectrum after median filtering.

Table 1 Summary of the proposed algorithm.

Summary of the estimation algorithm

1) Estimate the noise variance from (16) and (17).

2) Calculate the covariance matrix RV = VVT /N for all of the data.

3) Calculate the eigenvalues of RV via the eigenvalue decomposition.

4) Calculate RR with the eigenvalues of RV using (15).

5) Determine the rank R̂ by

R̂ = arg min
R
RR.

work.

3. Noise Variance Estimation

As shown in Fig. 1, V0 and E consist of the harmonic com-
ponent and remaining component, respectively; therefore, E
can be roughly estimated by removing the harmonic compo-
nent. Most of the harmonic component in a music signal is
a line spectrum that can be removed by a median filter [8].

Figure 2 shows a magnitude spectrum before and after
the median filtering: the upper and lower graphs show the
spectrums acquired by the constant-Q transform (CQT) [11]
before and after filtering, respectively. The median filter
can remove the line spectrum without removing the non-
harmonic components.

In the proposed noise variance estimation method, the
element of the remaining component at the k-th row and n-
th column êmed(k, n) is estimated by the median filtering ap-
plied to each spectrum as

êmed(k, n) = med

{
v(i, n), k−M−1

2
≥ i ≥

(
k+

M−1
2

)}
(16)

where med{x} is the median value of x, and the median filter
length M is an odd number. Finally, σ2

e is estimated as

σ2
e =

1
KN

K∑
k=1

N∑
n=1

|êmed(k, n)|2−
⎧⎪⎪⎨⎪⎪⎩

1
KN

K∑
k=1

N∑
n=1

êmed(k, n)

⎫⎪⎪⎬⎪⎪⎭
2

(17)

4. Experiment

The proposed algorithm was evaluated by performing an ex-

Fig. 3 Average and standard deviation of estimation errors.

periment with 30 piano signals from ‘AkPnCGdD’ of the
MIDI-aligned piano sounds (MAPS) database [12]. Each
signal was trimmed to 30 seconds long and transformed us-
ing CQT [11] into 24 frequency bins per octave from 27.5
Hz to 22050 Hz (half of the sampling rate). The magni-
tudes of the CQT spectrograms were used as input values.
The ground truth data were calculated as follows: obtain
the pitch and onset/offset information from the MIDI file,
extract the harmonic components of the spectrogram by re-
moving the energy of the CQT bins that does not correspond
to harmonics of f0, and calculate the matrix rank of the har-
monic components. The number of note events of each sam-
ple ranged from 11 to 51.

The conventional SURE with the random matrix the-
ory (SURE-RMT) [7] and the NMF rank estimation meth-
ods, gamma process NMF (GaP-NMF) [5], NMF with auto-
matic relevance determination (ARD-NMF) [6], were com-
pared with the proposed algorithm. The hyperparameters
a, b, and α of the GaP-NMF were set to 0.5, 0.1, and 1.0,
and the model parameters a and φ of the ARD-NMF were
set to 25.0 and 1.0, respectively. The median-filter length
of the proposed algorithm was set to 3. Each basis of the
GaP-NMF is considered an active basis when θr > τ, where
θr is a gain of the r-th basis in the GaP-NMF and τ is a
threshold of 10−5. The input data of the comparison meth-
ods were pre-processed to extract the harmonic components,
as described in [8]. The median-filter lengths of time frame
(lperc) and frequency slice (lharm) were 9 and 501, respec-
tively, for the fully rasterized CQT spectrogram provided by
the CQT toolbox [11].

Figure 3 shows the average and standard deviation of
the estimation error that is the estimated value minus the
ground truth of each algorithm. The horizontal bars denote
the average error, and the error bars denote the range be-
tween the average ± standard deviation values. The aver-
age errors of the GaP-NMF, ARD-NMF, and SURE-RMT
were −4.93, −0.4, and 0.5 with standard deviations of 10.89,
14.42, and 11.3, respectively; the average error of the pro-
posed algorithm was −0.26 with a standard deviation of 4.4,
which indicates a better performance than the other tested
algorithms.

5. Conclusion

In this paper, we report the development of a method for
estimating the rank of the harmonic components of a spec-
trogram based on the SURE algorithm. The proposed algo-
rithm estimates the standard deviation of remaining compo-
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nents for the SURE by suppressing the harmonic component
via the median filtering. Simulation results using MAPS
data show that the average error of the proposed algorithm
was −0.26, with a standard deviation of 4.4 which delivers a
better performance than that of the conventional algorithms.
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Appendix A: Derivation of the Risk Function

Using (13) and (1/N)
∑N

n=1(vT (n)p j)2 = l j, the time average
of the trace of the first term of (10) is [7]

1
N

N∑
n=1

tr

⎛⎜⎜⎜⎜⎜⎜⎝
R∑

j=1

∂p j

∂vT (n)
d jpT

j v(n)

⎞⎟⎟⎟⎟⎟⎟⎠

=
1
N

N∑
n=1

R∑
j=1

tr

(
∂p j

∂vT (n)

)
d jpT

j z(n)

=
1
N

R∑
j=1

∑
i� j

d j

l j − li
l j. (A· 1)

Furthermore, the partial derivative of d j is calculated using
(12) as

∂d j

∂vT (n)
=

∂

∂vT (n)

⎛⎜⎜⎜⎜⎝1 − σ̂
2
R

l j

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝ σ̂
2
R

l2j

⎞⎟⎟⎟⎟⎟⎠ 2
N

vT (n)p jpT
j . (A· 2)

Therefore, the time average of the trace of the second term
of (10) is calculated as

1
N

N∑
n=1

tr

⎛⎜⎜⎜⎜⎜⎜⎝
R∑

j=1

p j
∂d j

∂vT (n)
pT

j v(n)

⎞⎟⎟⎟⎟⎟⎟⎠

= 2
1
N

R∑
j=1

σ̂2
R

l2j

1
N

N∑
n=1

(
pT

j v(n)
)2

= 2
1
N

R∑
j=1

σ̂2
R

l j
. (A· 3)

Similarly, the time averages of the traces of the third term
and the fourth term of (10) are calculated as

1
N

N∑
n=1

tr

⎛⎜⎜⎜⎜⎜⎜⎝
R∑

j=1

p jd jpT
j

⎞⎟⎟⎟⎟⎟⎟⎠ = R − σ̂2
R

R∑
j=1

1
l j

(A· 4)

and

1
N

N∑
n=1

tr

⎛⎜⎜⎜⎜⎜⎜⎝
R∑

j=1

p jd jvT (n)
∂p j

∂vT (n)

⎞⎟⎟⎟⎟⎟⎟⎠ = 1
N

R∑
j=1

∑
i� j

d j

l j − li
li (A· 5)

respectively. Finally, the first term of (7) is calculated as

1
N

N∑
n=1

‖v(n) − v̂0(n)‖2

=
1
N

N∑
n=1

‖v(n) −
R∑

j=1

p jd jpT
j v(n)‖2

=

K∑
j=1

l j +

R∑
j=1

(
−2l jd j + d2

j l j

)

= (K − R)σ̂2
R +

R∑
j=1

σ̂4
R

l j
, (A· 6)

because (1/N)
∑N

n=1 ‖v(n)‖2 =
∑K

j=1 l j and
(1/N)

∑N
n=1(vT (n)p j)2 = l j. The detailed derivation can be

also found in [7].
Substituting (A· 1), (A· 3), (A· 4), (A· 5), and (A· 6) in-

stead of each term of (7), the risk function (14) is obtained.
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