Silicon photonic optical phased array with integrated phase monitors

Shun TAKAHASHI†‡†, Taichiro FUKUI†‡‡, Nonmembers, Ryota TANOMURA†, Kento KOMATSU†, Student Members, Yoshihata TAGUCHI†, Yasuyuki ŌZEKI†, Nonmembers, Yoshiaki NAKANO†, Fellow, and Takuo TANEMURA(†b), Member

SUMMARY The optical phased array (OPA) is an emerging non-mechanical device that enables high-speed beam steering by emitting precisely phase-controlled lightwaves from numerous optical antennas. In practice, however, it is challenging to drive all phase shifters on an OPA in a deterministic manner due to the inevitable fabrication-induced phase errors and crosstalk between the phase shifters. In this work, we fabricate a 16-element silicon photonic non-redundant OPA chip with integrated phase monitors and experimentally demonstrate accurate monitoring of the relative phases of light from each optical antenna. Under the beam steering condition, the optical phase retrieved from the on-chip phase monitors varies linearly with the steering angle, as theoretically expected.

key words: Silicon photonics, Optical phased arrays, Optical phase monitoring

1. Introduction

The optical phased array (OPA) [1–3] is a solid-state beam steering device, which is expected in versatile applications, including light detection and ranging [4–7], computational imaging [8–16], photonic switching [17–19], free-space optical communication [5, 6], and image projection [20–23]. Compared to conventional mechanical beam-steering devices, OPAs can be more compact, high-speed, and reliable owing to their non-mechanical operation principle. Large-scale OPAs have been demonstrated on various integration platforms, including silicon [5, 6, 24–26], indium phosphide [27, 28], and silicon nitride [29]. Moreover, by employing electro-optic phase shifters, ultrahigh-speed beam steering can be realized [20, 27, 30, 31].

The output beam of an OPA is steered to the desired direction by emitting precisely phase-controlled lightwaves from N optical antennas. In practice, however, it is difficult to control the phase of light at each waveguide in a deterministic manner due to several reasons. For example, inevitable fluctuation of the effective refractive index is present as a result of small fabrication errors. In addition, nonzero crosstalk between adjacent phase shifters may also be a problem, especially when thermo-optic (TO) phase shifters are used [32–34]. Therefore, real-time monitoring and calibration of the optical phase errors are mandatory.

One method of phase calibration is to observe the far-field pattern (FFP) using an external camera and to iteratively adjust the voltages applied to all phase shifters so that the desired beam pattern is obtained [25, 26, 35]. While this is the simplest method commonly employed in laboratories, the use of a bulky and costly camera may not be acceptable in practical systems. In addition, as N increases, it becomes more and more challenging and time-consuming to optimize the driving conditions of N phase shifters using only the intensity information of FFP, which is influenced by the complex optical fields emitted from all N antennas. While camera-free OPA systems with on-chip FFP monitors have been demonstrated [36–38], the complexity of retrieving the phase information from FFP remains to be an issue.

Another method is to directly detect the phase difference of light propagating through adjacent waveguides by employing on-chip interferometers and power monitors [39]. Since the optical phases at all N waveguides can be retrieved sequentially, phase errors can be calibrated without an iterative optimization process. Moreover, this scheme is fully compatible with aperiodic OPAs, where the optical antennas are located with non-uniform spacings to enhance the number of resolvable points beyond N [22, 23, 40, 41]. As an extreme case of interest, a non-redundant OPA (NROPA) that employs the concept of a non-redundant array (NRA) [42–47] offers the highest spatial resolution, which scales at N² [41]. By integrating on-chip phase monitors to an NROPA, therefore, N² resolvable points can be obtained with only N power monitors. While there are a few reports on OPAs with integrated phase monitors [28, 39], implementation of on-chip phase monitors to an NROPA has not been demonstrated.

In our recent work [48], we developed a silicon photonic NROPA chip that consists of 16 phase shifters (N = 16) and germanium-based photodiodes (PDs) to demonstrate on-chip optical phase monitoring functionality. In this article, we provide detailed descriptions of the fabricated device as well as its operation principle. We then present comprehensive experimental results, including the phase monitoring properties measured for all 16 antennas. Finally, we clarify the origin of the discrepancy from the theory by comparing the results with rigorous numerical analysis.

†The authors are with the Department of Electrical Engineering and Information Systems (EEIS), Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
‡‡These authors contributed equally to this work.
a) E-mail: fuku@hotaka.t.u-tokyo.ac.jp
b) E-mail: tanemura@ee.t.u-tokyo.ac.jp
The photocurrent signal i_n obtained from the n-th PD ($n = 1, 2, ..., N - 1$), which monitors the interference of the lightwaves from the n-th and $(n + 1)$-th waveguides, can be written as

$$i_n = \frac{\eta}{4} \left[|E_n|^2 + |E_{n+1}|^2 + 2 |E_n| |E_{n+1}| \cos (\Delta \phi_{n,n+1}) \right],$$ \hspace{1cm} (1)$$

where η is a coefficient describing the responsivity of the PD, E_n is the complex amplitude of the light from the n-th waveguide, $\Delta \phi_{n,n+1} \equiv \phi_n - \phi_{n+1}$, and ϕ_n is the optical phase of light from the n-th waveguide. For the sake of convenience, Eq. (1) can be written in a simplified form as

$$i_n \equiv \alpha_n \cos (\Delta \phi_{n,n+1}) + \beta_n,$$ \hspace{1cm} (2)$$

where α_n and β_n are real-valued constants. Although $|E_n|$ in Eq. (1) should ideally be equal for all n, any variation among N waveguides due to the inevitable non-uniformity at the $1 \times N$ splitter, the grating couplers, and the MMI couplers would result in different values of α_n and β_n depending on n. Note that both α_n and β_n can be derived from a priori loss measurement and the input optical power, which is monitored by the N-th PD. As a result, the phase difference $\Delta \phi_{n,n+1}$ in Eq. (2) can be extracted from the measured i_n and its small-signal response by applying a small dithering to each phase shifter as shown in Fig. 2.

We should note that in reality, there is a non-negligible optical path length from the grating couplers to the optical phase monitoring circuit, leading to the accumulation of optical phase error. Therefore, the relative optical phase at the input of the optical phase monitoring circuit is not necessarily equal to that at the output of the grating couplers. Taking these accumulated optical phase errors Ψ_n into account, the actual optical phase emitted from the n-th grating coupler can be written as $\Phi_n \equiv \phi_n - \Psi_n$. For convenience, we define $\Delta \Phi_{n,n+1}$ as $\Delta \Phi_{n,n+1} \equiv \Phi_n - \Phi_{n+1}$ to represent the actual optical phase difference of lightwaves emitted from adjacent...
Accordingly, the measured phase difference $\Delta \theta$ and n is the distance between optimizing the phase shifters to focus the beam at θ_i derived from a single calibration step by recording $\Delta \Psi$. Note that $\Delta \Psi$ can be derived from a single calibration step by recording i_n after optimizing the phase shifters to focus the beam at $\theta = 0$.

3. Device Fabrication and Experimental Setup

In order to demonstrate the feasibility of on-chip phase monitoring, we fabricated a silicon photonic OPA chip with 16 phase shifters ($N = 16$) and on-chip phase monitors using a 200 nm silicon-on-insulator (SOI) multi-project wafer foundry service. The SOI wafer consisted of a 220-nm-thick silicon layer and a 2 µm buried oxide layer. Figure 3 shows the micrograph of the device.

We employed a 400-nm-wide strip silicon waveguide to ensure single-mode operation and designed each component to operate at the fundamental transverse electric (TE) mode. To equally distribute the input light to 16 waveguides, 4 stages of 1×2 MMI couplers were cascaded. The 1×2 MMI couplers were designed to have 5-µm width and 21.6-µm length, with 10-µm-long tapers at the input and output ports. At each waveguide, a 220-µm-long TiN TO phase shifter was attached to control the optical phase. The resistance of the TO phase shifter was approximately 1.2 kΩ, which could induce 2π phase shift at approximately 20 mW driving power.

After the phase shifter section, approximately 60% of the light was emitted to free space using 750-µm-long waveguide-based grating antennas with a grating pitch of 720 nm and a duty cycle of 50%, which were realized by shallow etching (~10 nm) of the silicon waveguide core. They were located sparsely at the positions defined by a Golomb ruler [41, 43] with a unit spacing of 2 µm. The remaining portion of light was split by 1×2 MMI couplers, mixed with the light from adjacent waveguides by 2×1 MMI couplers, and detected by 100-µm-long germanium PDs. The waveguides were carefully designed so that the geometrical lengths from the input port to the grating couplers as well as those from the grating couplers to the phase monitor sections were identical for all waveguides. We should note, however, that due to the inevitable deviation of the effective refractive index of the silicon waveguides, non-negligible optical phase errors accumulate, which had to be calibrated using the phase monitors.

Figure 4 shows the experimental setup. All phase shifters and PDs were wire-bonded to a printed circuit board, via which they were connected to a driver and a detector circuit. We used a driver circuit with 10-bit digital-to-analog converters to drive all the 16 phase shifters independently. A reverse bias of 0.1 V was applied to all PDs. The dark current was approximately 30 nA. In contrast, average photocurrent was in the order of few µA when the input optical
power to the chip was set to 5 dBm. The effect of dark current was, therefore, negligible in our experiments. The photocurrent from each PD was amplified and detected by an analog-to-digital converter. We retrieved the relative optical phase from the detected photocurrent signals of on-chip monitors (red triangles) as a function of sin θ for the five beam steering angles θ shown in Fig. 6. The theoretical values of ΔΦ₀,₀+₁ calculated by Eq. (3) are plotted by the black dotted lines for comparison. The experimentally retrieved ΔΨ₀,₀+₁ is indicated in each figure, which is almost random due to the stochastic nature of the accumulated optical phase errors. We also indicate the root mean square error Ξ₀,₀+₁ for each monitoring port, which is defined as

\[Ξ₀,₀+₁ = \sqrt{\frac{1}{5} \sum_{\sin \theta} (ΔΦ₀,₀+₁ - ΔΦ₀,₀+₁;\text{theory})^2} \]

where ΔΦ₀,₀+₁ denotes the experimentally retrieved relative optical phase and ΔΦ₀,₀+₁;theory denotes the theoretical relative optical phase. In most cases, we can confirm that the retrieved ΔΦ₀,₀+₁ is proportional to sin θ and d₀,₀+₁ in agreement with the theory. In particular, Ξ₀,₀+₁ is as small as 0.21 rad for ΔΦ₀,₁₀, which is the best port combination due to the excellent overlap of light at the far-field plane. In contrast, in some ports, there are relatively large discrepancies between the experiment and theory. This can be attributed to the poor overlap of light from adjacent waveguides at the far field plane, as we discuss in the next section. From these results, the feasibility of tracking the optical phase at each waveguide in OPA by on-chip monitors is demonstrated.

5. Discussion

While the validity of on-chip phase monitors is verified experimentally to some extent in the previous section, relatively large errors are confirmed in some ports as shown in Fig. 7. We attribute these errors to the undesired fluctuation in the...
emission angle along the \(\psi \) direction due to the fabrication errors at the grating couplers. The imperfect focusing in \(\psi \) direction would then result in imperfect interference along \(\theta \) direction as observed in Fig. 6. To investigate this assumption, we numerically calculate how the FFP changes when the emission angle \(\psi \) from 16 grating couplers has a standard deviation of \(S(\psi) \).

Figure 8 shows the numerically simulated FFP of a
16-channel 1D NROPA based on the Golomb ruler when \(S(\psi)/\Delta\psi \) increases from 0 [Fig. 8(a)] to 3 [Fig. 8(e)], where \(\Delta\psi \) is the full-width-at-half-maximum (FWHM) of the FFP from each grating coupler. Here, we assume that \(\Phi_1 = \Phi_2 = \cdots = \Phi_{16} \) so that a single beam should ideally be formed at \(\theta = 0 \). When \(S(\psi)/\Delta\psi \) is large, however, we can see that FFPs from 16 antennas distributed along \(\psi \) do not interfere perfectly. Consequently, the residual noisy components emerge in Fig. 8 even when Eq. (4) is satisfied. In particular, Fig. 8(d) and Fig. 8(e) well resemble the experimentally obtained features in Fig. 6, where multiple stripes of interference fringes with various spatial frequencies are generated. This implies that some pairs of adjacent antennas have poor contribution to the focused beam at FFP, which causes weaker correlation to the actual steering angle \(\theta \) as observed in Fig. 7.

As a unique property of NROPA, interference of light from every pair of waveguides generates different spatial frequency components in the FFP [16, 41]. Therefore, poor overlap between the beams from different grating couplers directly corresponds to the loss of a specific spatial frequency component, which would disturb the beam quality. We should note that an error in the emission angle of a grating coupler generally originates from the deviation in the effective refractive index of the silicon waveguide. This issue can be solved by making the waveguide wider at the grating section so that the effective index is less sensitive to the fabrication errors [49–51]. Once the emission angle errors are suppressed, the NROPA configuration would offer a substantial advantage over other OPA configurations, since the high spatial resolution can be obtained with a minimal number of optical antennas and on-chip phase monitors.

6. Conclusion

We have fabricated a silicon photonic NROPA chip with on-chip phase monitors and experimentally demonstrated its capability to track the optical phase of light emitted from each antenna. The retrieved optical phases from the photocurrent signals were compared with the measured FFP of the OPA to show reasonable agreement. The residual discrepancy was attributed to the non-uniform emission angles of grating couplers, which can be improved in the future design. This work shows the feasibility and effectiveness of the integrated phase monitors for measuring and controlling the output wavefront from an OPA without external bulky systems. The demonstrated scheme would especially be attractive for an NROPA since a minimal number of phase monitors are needed to achieve the required spatial resolution.

Acknowledgements

This work was funded by the Grant-in-Aid of Japan Society for the Promotion of Sciences (18H03769, 21J11982). The authors thank Keiichi Iguchi for the development of the driver circuit.

References

Takahashi et al.: Silicon Photonic Optical Phased Array with Integrated Phase Monitors

Shun Takahashi received the B.E. degree in Electrical and Electronic Engineering, from the University of Tokyo, Tokyo, Japan, in 2021. He is a master student in the Department of Electrical Engineering and Information Systems, the University of Tokyo. He is a student member of Japan Society of Applied Physics. His current research interest includes ultrafast fiber laser and its application to imaging.

Taichiro Fukui received the B.S. in Electrical and Electronic Engineering and M.S. in Electrical Engineering and Information Systems (EEIS) from the University of Tokyo, Tokyo, Japan, in 2018 and 2020, respectively. He is currently a Ph.D. student in Dept. EEIS, School of Engineering, the University of Tokyo. From 2021, he is a research fellow (DC2) in the Japan Society for the Promotion of Science (JSPS). His research interest include physics, technologies, and applications of optoelectronic devices, photonic integrated circuits, and nanophotonic devices. He is a student member of IEEE, Optica, and Japan Society of Applied Physics (JSAP).

Ryota Tanomura received the B.E., and M.S., degrees in electronic engineering, from the University of Tokyo, Tokyo, Japan, in 2018 and 2020, respectively. He is currently working toward the Ph.D. degree in electrical engineering and information systems with the University of Tokyo, Tokyo, Japan. From 2020, he is a research fellow (DC1) in the Japan Society for the Promotion of Science (JSPS). He is a student member of IEEE, Japan Society of Applied Physics (JSAP), and Institute of Electronics, Information and Communication Engineers(IEICE). His research interest include programmable photonic integrated circuits and its system for communication and computation.

Kento Komatsu received the B.S. and M.S. in electronic engineering from the University of Tokyo, Tokyo, Japan, in 2015 and 2017, respectively. From 2017 to 2021, he engaged in the development of tunable semiconductor lasers in Sumitomo Electric Device Innovations, Inc., Yamanashi, Japan. He is currently working toward the Ph.D. degree with the Department of Electrical Engineering and Information Systems, the University of Tokyo. From 2022, he is a research fellow in the Japan Society for the Promotion of Science (JSPS). His research interests include photonic integrated circuits, optical communications, and nanophotonics. He is a student member of Optica.

Yoshitaka Taguchi is a Ph.D. student at the University of Tokyo, where he received his B.S. in Electrical and Electronic Engineering in 2018 and M.S. in Electrical Engineering and Information Systems in 2020. His research focus is in the field of Quantum Optics, with particular interests in numerical calculation, instrumentation engineering, photonics, applied mathematics, and quantum mechanics. He is currently a research fellow (DC1) with the Japan Society for the Promotion of Science.

Yasuyuki Ozeki was born in Mie, Japan, in 1977. He received the B.S., M.S., and Dr. Eng. degrees in electronic engineering from the University of Tokyo, Tokyo, Japan, in 1999, 2001, and 2004, respectively. In 2004, he joined Furukawa Electric Co., Ltd., as a Postdoctoral Researcher of Japan Science and Technology Agency (JST). In 2006, he joined the Department of Material and Life Science, Osaka University, Osaka, Japan, as an Assistant Professor. From 2009 to 2013, he was also a PRESTO Researcher with JST. In 2013, he was appointed as an Associate Professor with the Department of Electrical Engineering and Information Systems, University of Tokyo, and promoted to a full Professor in 2021. He has worked on millimeter-wave photonics, nonlinear fiber optics, ultrafast lasers, and their application to microprocessing and biomedical microscopy. His current research interests include label-free biomedical imaging with stimulated Raman scattering microscopy, and its related technologies including ultrafast laser sources, detection electronics, image processing, etc. Dr. Ozeki is a Member of the IEEE Photonics Society, the Optical Society, the Japan Society of Applied Physics, the Optical Society of Japan, and the Laser Society of Japan.
Yoshiaki Nakano Yoshiaki Nakano received the B. E., M. S., and Ph. D. degrees in electronic engineering, all from the University of Tokyo, Japan, in 1982, 1984, and 1987, respectively. He is currently Professor with the Department of Electrical Engineering and Information Systems (EEIS), Graduate School of Engineering, the University of Tokyo. In 1987, he joined the Department of Electronic Engineering, the University of Tokyo, became an associate professor in 1992, a full professor in 2000, and the department head in 2001. He moved to Research Center for Advanced Science and Technology (RCAS), the University of Tokyo, in 2002 as a professor, and served as the Director General of the center from 2010 till 2013. Then he moved back to the Engineering School to fill up the current professorship position with the Dept. of EEIS. His research interests have been physics and fabrication technologies of semiconductor distributed feedback lasers, semiconductor optical modulators switches, monolithically-integrated photonic circuits, and high-efficiency heterostructure solar cells, as well as metal-organic vapor phase epitaxy of III-V compound semiconductors. Dr. Nakano is currently a member of the Science Council of Japan (SCJ) and President of the Japan Institute of Electronics Packaging (JIEP). He used to serve as Vice President of the Institute of Electronics, Communication, and Information Engineers (IEICE), President of Electronics Society, IEICE, Chair of the IEEE Tokyo Section, an elected member of the Board of Governors of IEEE LEOS, a member of the Board of Directors of the Japan Society of Applied Physics (JSAP), the Editor-in-Chief of Applied Physics Express (APEX) and Japanese Journal of Applied Physics (JJAP), and a member of the Board of Directors of JIEP. He is Fellow of IEEE, Optica (former OSA), IEICE, and JSAP.

Takuo Tanemura received the B.E., M.S., and Ph.D. degrees in Electronic Engineering, all from the University of Tokyo, Japan, in 2001, 2003, and 2006, respectively. In 2006, he joined the Department of Electronic Engineering, the University of Tokyo and moved to the Research Center for Advanced Science and Technology, the University of Tokyo in 2007 as a Lecturer. In April 2012, he moved back to the Department of Electronic Engineering, the University of Tokyo, and became Associate Professor. From March 2010 to February 2012, he was a Visiting Scholar at Ginzton Laboratory, Stanford University. His current research interest includes semiconductor photonic integrated circuits, nanophotonic and nanometallic devices, and their applications to optical communication, interconnects, imaging, and computing systems. He has authored and co-authored more than 200 papers published in refereed international journals and conferences. Dr. Tanemura is a member of IEEE, Optica, Institute of Electronics, Information and Communication Engineers (IEICE), and Japan Society of Applied Physics (JSAP).