NUMERICAL ANALYSIS OF PULSE RESPONSE FOR SLANTED GRATING STRUCTURE WITH AN AIR REGIONS IN DISPERSION MEDIA BY TE CASE

Ryosuke OZAKI†, member and Tsuneki YAMASAKI†, Senior member

SUMMARY In our previous paper, we have proposed a new numerical technique for transient scattering problem of periodically arrayed dispersion media by using a combination of the fast inversion Laplace transform (FILT) method and Fourier series expansion method (FSEM), and analyzed the pulse response for several widths of the dispersion media or rectangular cavities. From the numerical results, we examined the influence of a periodically arrayed dispersion media with a rectangular cavity on the pulse response.

In this paper, we analyzed the transient scattering problem for the case of dispersion media with slanted air regions by utilizing a combination of the FILT, FSEM, and multilayer division method (MDM), and investigated an influence for the slanted angle of an air region. In addition, we verified the computational accuracy for term of the MDM and truncation mode number of the electromagnetic fields.

key words: Pulse response, slanted air region, multilayer division method, FILT method, FSEM.

1. Introduction

Recently, the environment problem for global warming phenomenon is very serious challenges such as large scale flood damage caused by guerrilla rainstorm in the world. In addition, the deterioration of a building for tunnel or the road became social issues. As one of the reasons for these problems, we can consider that it is damage to buried pipes in underground structures or the formation of cavities due to the seepage of rainwater into the underground [1]. On the other hand, the ground penetrating radar (GPR)[2,3] is generally known as a technology which can explore subsurface structures. The GPR is used such as exploration of rebar structure, metal or landmine detections [4], archaeological and geological surveys in a wide range of these fields, and in relatively shallow underground structures under concrete. In particular, the GPR is well known as useful tool and technology that measures the behavior of a wave reflected by target objects in subsurface structure[5]-[8]. As we are required to explore the target objects buried in subsurface structure without destroying [9], it is important to check whether buried objects are damaged by regular maintenance and inspections. In general, the electric constant is a function of frequency in a medium of the subsurface structures. Therefore, it is necessary to treat the ground as dispersion medium. Furthermore, it needs to consider the inhomogeneous media for the case of arbitrary cavity regions in underground medium. From above explanation, these problems are known as inverse scattering problem in the fields of the electromagnetic field theory. The finite difference time domain (FDTD) method is used to analyze the transient scattering problem caused by cavity under reinforced concrete and circular pipes buried in underground [4, 7, 10-12]. But in general, the medium constants in soil are expressed a complex dielectric constant. And so, they have not been analyzed by using the complex dielectric constant with a function of frequency in dispersion medium in detail. However, nowadays, the inverse scattering problem of the electromagnetic waves has become of interest for remote sensing and further development of imaging technology [13, 14].

In our previous paper [15], we proposed a method for determining soil electromagnetic parameters which matched experimentally obtained values [16], and investigated the fundamental problem of dispersion medium with reflective plate based on resulting waveform. Then, we analyzed the pulse response with periodically conducting strips in dispersion media by utilizing a combination of the point matching method (PMM) [17] and the fast inversion of Laplace transform (FILT) method[18]-[20], and investigated the effect of conducting strips and those widths from difference waveform [21,22]. In recent paper [23], we also have reported the distribution of electric field based on the resulting waveform as first investigation of imaging technology. Furthermore, in order to analyze the dispersion media with inhomogeneous property, we have investigated the transient scattering problem of periodically arrayed dispersion media with rectangular air region by using a combination of the Fourier series expansion method (FSEM) and the FILT method [24].

†The authors are with Department of Electrical Engineering, College of Science and Technology, Nihon University, Tokyo, Chiyoda-ku, 101-8308 Japan.
The permittivity of region \(\mathcal{S}_2 \) is pulse width of incident pulse, \(t_s \), and the permittivity is defined as
\[
\varepsilon(\omega) = \text{dielectric constant expressed in the complex frequency domain, (1)}
\]

The background and motivation of incorporating with the MDM are as follows: (1) Establishment of analysis method applicable to problem which is buried in arbitrary object in the future. (2) All electromagnetic fields can be obtained from the electromagnetic field of the first layer in slanted grating structure. (3) The number of dimension for simultaneous equation to be solved does not depend on the number of layers even in time response analysis.

Moreover, we verified the accuracy of the MDM and truncation mode number of the electromagnetic field. From the above investigation, we clarified the validity of present method in complex frequency domain.

2. Method of Analysis

We consider the slanted grating structure with air region in dispersion media as shown in Fig.1. The structure is uniform in the \(z \)-direction, and is periodic length \(p \) in the \(y \)-direction. To examine an influence for basic response waveform and effectiveness of our numerical technique, we embedded with reflective plate at \(x = d_0 \). The permittivity of region \(\mathcal{S}_1 \) \((0 \leq x \leq d_0) \) is dielectric constant \(\varepsilon_0 \), that of region \(\mathcal{S}_2 \) \((0 < x < d_0) \) is complex dielectric constant \(\varepsilon(s,x,y) \) in one period. The permeability is assumed to be \(\mu_0 \) in all regions. Here, the width of dispersion medium is \(w \), and the slanted angle \(\theta \) is defined as \(\tan^{-1}(\delta/d_0) \), and also \(\delta \) is the slanted width. The time dependence of the electromagnetic fields is \(\exp(\text{i} \omega t) \) in complex frequency domain and is omitted in the field expression.

In the formulation, the TE (the electric field has only \(x \)-direction, \(y \)-component) case is discussed, the notation of the electromagnetic field in the time domain are denoted by \(E \) and \(H \), while those in the complex frequency domain by \(\tilde{E} \) and \(\tilde{H} \).

When the sine pulse is assumed to be normal incidence at \(x < 0 \), the electric field in region \(\mathcal{S}_1 \) is expressed as
\[
\tilde{E}^{(s)}_z(x,y) = \tilde{E}^{(v)}_z(x,y) + \tilde{E}^{(r)}_z(x,y), \tag{1}
\]
\[
\tilde{H}^{(s)}_z(x,y) = \frac{1}{\varepsilon_0} \tilde{H}^{(v)}_z(x,y) + \tilde{H}^{(r)}_z(x,y), \tag{2}
\]
\[
\tilde{H}^{(r)}_z(x,y) = \frac{1}{\varepsilon_0} \tilde{H}^{(v)}_z(x,y) + \tilde{H}^{(r)}_z(x,y), \tag{3}
\]
\[
\tilde{E}^{(s)}_z(x,y) = \frac{1}{\varepsilon_0} \tilde{E}^{(v)}_z(x,y) + \tilde{E}^{(r)}_z(x,y), \tag{4}
\]
\[
\tilde{H}^{(s)}_z(x,y) = \frac{1}{\varepsilon_0} \tilde{H}^{(v)}_z(x,y) + \tilde{H}^{(r)}_z(x,y), \tag{5}
\]
\[
\tilde{H}^{(r)}_z(x,y) = \frac{1}{\varepsilon_0} \tilde{H}^{(v)}_z(x,y) + \tilde{H}^{(r)}_z(x,y), \tag{6}
\]

However, the solutions of Eq.(4) in \(M \) layer are derived by shifting the first layer profile as following relation [25]:
\[
\tilde{h}^{(s)}_v = \tilde{h}^{(v)}_v, \quad \tilde{u}^{(s)}_y = \tilde{u}^{(v)}_y \exp(j 2 \pi \delta x / p), \tag{7}
\]
\[
\tilde{u}^{(v)}_y = (l-1/2)d_n \tan(\theta), \tag{8}
\]
Therefore, the electromagnetic fields of region S_2 can be expanded as following equation:

$$E_z^{(2)}(x,y) = \sum_{v=1}^{2N_1+1} \left[A_v^{(1)} e^{i(\nu-\nu_0)k_x} + B_v^{(1)} e^{i(\nu+\nu_0)k_x} \right] f_v(y), \quad (6)$$

$$f_v(y) = \sum_{n=-N_1}^{N_1} e^{-2\pi n y \over \lambda_0}, \quad \text{(7)}$$

$$H_y^{(2)}(x,y) = 1 \frac{\partial E_z^{(2)}(x,y)}{\partial x}, \quad \text{(8)}$$

where $A_v^{(1)}$, $B_v^{(1)}$ are unknown coefficients to be determined by boundary conditions. From the boundary conditions at $x = 0$, $x = d_m$, and $x = ld_m$ ($l = 1 \sim (M-1)$), we derive the relational expression of unknown coefficients.

First, by the boundary condition at $x = 0$ and $x = d_m$, we obtain the following equation by matrix algebra:

$$Q_x A^{(1)} + Q_x B^{(1)} = E_x, \quad (9)$$

$$Q_x A^{(M)} + Q_x B^{(M)} = 0, \quad (10)$$

where,

$$Q_x \triangleq [q_{x,n}] = \begin{bmatrix} 1 & 1 & \ldots & 1 \end{bmatrix}, \quad (\nu = 1 \sim 4),$$

$$q_{x,n} = (\nu-\nu_0)k_x, \quad (11)$$

Next, we derive the matrix relation between $A_v^{(1)}$ and $A_v^{(M)}$. By the boundary condition at $x = ld_m$, we can expand as following equation:

$$A^{(1)} = \begin{pmatrix} G_{11}^{(1)} & G_{12}^{(1)} & \cdots & G_{1n}^{(1)} \\ G_{21}^{(1)} & G_{22}^{(1)} & \cdots & G_{2n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ G_{n1}^{(1)} & G_{n2}^{(1)} & \cdots & G_{nn}^{(1)} \end{pmatrix} A^{(M)}$$

$$= \begin{pmatrix} G_{11} & G_{12} & \cdots & G_{1n} \\ G_{21} & G_{22} & \cdots & G_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ G_{n1} & G_{n2} & \cdots & G_{nn} \end{pmatrix} A^{(M)}, \quad \text{(12)}$$

Fig.3 Waveform of pulse response for different Δ with $W_p = 0.5$.

$$e^{(i)}_x \triangleq \left[\nu_{r,n} \right]^{-1}, \quad (\nu = 1 \sim 2N_1 + 1), \quad -N_1 \leq n \leq N_1.$$

Rearranging Eqs.(9),(10),(11) with respect to $A^{(M)}$, we can get the simultaneous equation by matrix algebra as follows:

$$X \cdot A^{(M)} = E_x, \quad (12)$$

where,

$$X \triangleq \begin{pmatrix} [Q_x G_{11} + Q_x G_{12}] & \cdots & [Q_x G_{1n}] \\ [Q_x G_{21}] & \cdots & [Q_x G_{2n}] \\ \vdots & \vdots & \vdots \\ [Q_x G_{n1}] & \cdots & [Q_x G_{nn}] \end{pmatrix},$$

$$A^{(M)} \triangleq \begin{pmatrix} A_{11}^{(M)} & A_{12}^{(M)} & \cdots & A_{n1}^{(M)} \\ A_{21}^{(M)} & A_{22}^{(M)} & \cdots & A_{2n}^{(M)} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1}^{(M)} & A_{n2}^{(M)} & \cdots & A_{nn}^{(M)} \end{pmatrix}.$$

We derive the other unknown coefficients $A_v^{(1)}$, $B_v^{(1)}$, $B_v^{(M)}$ from solution obtained by solving Eq.(12). As a result, we evaluate the reflection coefficients R_x by using the unknown coefficients. The reflected electric
fields $\tilde{E}^{(r)}(x,y)$ in complex frequency domain obtained from second term of Eq.(2) are transformed into the normalized time domain by using the following FILT method:

$$E^{(r)}_{v}(T)=\frac{1}{2\pi} \int_{y=\infty}^{y=0} \tilde{E}^{(r)}_{v}(X,Y)e^{jST}dS,$$

$$=\frac{e^{jST}}{T} \left(\sum_{n} F_{n} = 2^{-j(J+1)/2} \sum_{J=L} C_{J/L} F_{N,L} \right), \quad (13)$$

where,

$$F_{n} = (-1)^{n} \operatorname{Im} \left[E^{(r)}_{v}(X,Y) \right], \quad S = a + j(n-\frac{5}{2})\pi,$$

$$C_{J/L} = 1, \quad C_{J/L} = \frac{J+1}{L(J+1-L)}.$$

N is the truncation mode number of the FILT method, J is the number of terms in the Euler transformation, S is the normalized complex frequency, T is the normalized time, and X and Y are the normalized coordinates.

3. Numerical Results

We employ the dispersive property with soil moisture 5% [15, 16] and constant throughout in this paper. The parameters for the numerical analysis were set as center frequency $f_{0}=1$ GHz $(t_{c}=1/f_{0})$, normalized depth $D_{0}(\equiv d_{0}/p)=0.2$, normalized period $P(\equiv p/(t_{c}e))=1$.

In the following analysis, the computational parameters use $a=4, J=5, N=10, M=10$, and $N_{l}=20$.

Figures 3(a) and (b) show the waveform of pulse response for reflection electric field $E^{(r)}_{v}(T)$ of Eq.(2) and normalized magnetic field $H^{(r)}_{v}(T)$ of Eq.(3) for different $\Delta(\equiv \delta/p)$ under the medium width $W_{p}(\equiv w/p)=0.5$. Figure 3(c) shows the differential waveform $f(T) (\equiv E^{(r)}_{v}(T) - H^{(r)}_{v}(T))$ for results of Figs.3(a) and (b). From Fig.3, we can see the following features:

1. In case of the reflection electric field; the effect of Δ is seen clearly at $0.5 \leq T \leq 2$ as Δ increase. We can consider the influence is because that propagating velocity of reflected wave for slanted cavity region is fast, and phase and amplitude became large.

2. In case of the reflection magnetic field; the characteristics tendency is the same with reflection electric field. But, the difference between the electric and magnetic fields appears at $1 \leq T \leq 2$ and $3 \leq T \leq 4$. We can consider it as the influence of the complex frequency for magnetic field component. In the future, we will have analyzed the transient scattering problem with arbitrary objects buried in dispersion media. Then, we thought that it is difficult to predict the shape information by using only the electric field component. Therefore, we discuss it to specify influence of the slanted cavity from information of waveform by using both the electric and magnetic fields component in TE wave.

(1-3) From in Fig.3(c), the influence of slanted air widths is seen clearly at near $0.0 < T \leq 0.5$ and $2.0 \leq T \leq 3.0$, and other characteristic tendency is about same with the phase delay. We can understand that the result of $\Delta = 0.0$ for Fig.3(c) is the different due to the electric and magnetic fields. Consequently, we are considered that it is possible to extract the effect on the width of slanted cavity from further investigation the differential waveform between $\Delta = 0.0$ and $\Delta \neq 0.0$.

Next, we confirm the computational accuracy with a convergence test of the truncation mode number $1/N_{l}$ and multilayer division number $1/M$ as fixed FILT parameters.

Figures 4(a) and (b) show the convergence of reflection electric and magnetic fields $E^{(r)}_{v}(T)$, $H^{(r)}_{v}(T)$ versus $1/N_{l}$ at $T=1.15, T=1.26$, respectively for fixed M, and $1/M$ at $T=1.15, T=1.26$, respectively for fixed N_{l}.

Fig.4 Convergence of $E^{(r)}_{v}(T)$ and $H^{(r)}_{v}(T)$ vs. $1/N_{l}$ and $1/M$
N_1 under the same conditions as in Fig.3. From Fig.4, it obtained the results of computational accuracy as follows:
(2-1)From Fig.4(a), the relative error of E^{(r)}_i(T), H^{(r)}_r(T) to the extrapolated true values are less than about 0.1% when we computed at fixed M = 10.
(2-2)From Fig.4(b), the relative error of E^{(r)}_i(T), H^{(r)}_r(T) to the extrapolated true values are less than about 0.1% and 1% when we computed at fixed N_1 = 20, respectively.

Therefore, we were able to see that our novel method can compute the pulse responses for E^{(r)}_i(T) and H^{(r)}_r(T) to within 1% and 0.1% degree of the true value with high accuracy when we computed at M = 10 and N_1 = 20 from these results. And also, we need to see the response H^{(r)}_r(T) at as increase M. In this study, to examine the influence of harmonics for all reflection coefficients R_s, we have investigated the reflected electric and magnetic fields by using the sum of spatial harmonics for fixed an observation point. In the future, we will investigate the pulse response for an influence of only spatial harmonics.

4. Conclusions
In this paper, we analyzed the pulse responses of slanted grating structure in periodically arrayed cavity and dispersion media by using a combination of the FSEM, FILT, and MDM methods, and investigated the influence of slanted air widths on the different waveform of f(T).

As a result, we clarified the influence of both cavity width and the computational accuracy for truncation mode number and multilayer division number.

In the future, we would like to apply present method to pulse response analysis with arbitrary cavity shape.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Number JP21K04239.

References