Evaluation and Extraction of Equivalent Circuit Parameters for GSG-type Bonding Wires Using Electromagnetic Simulator

Takuichi Hirano†, Senior Member

SUMMARY In this paper, the author performed an electromagnetic field simulation of a typical bonding wire structure that connects a chip and a package, and evaluated the signal transmission characteristics (S-parameters). In addition, the inductance per unit length was extracted by comparing with the equivalent circuit of the distributed constant line. It turns out that the distributed constant line model is not sufficient because there are frequencies where chip-package resonance occurs. Below the resonance frequency, the conventional low-frequency approximation model was effective, and it was found that the inductance was about 1 nH/mm.

key words: Bonding wires, extraction, inductance, capacitance, electromagnetic field simulation.

1. Introduction

A bonding wire is used to connect the semiconductor chip and the package (or substrate). The bonding wire is crimped by heating a gold wire to the pad on the chip and the package [1-2]. Semiconductor chips connect power supplies through bonding wires and send and receive signals to and from the outside. When a signal is transmitted through a bonding wire, it becomes a lumped constant line at low frequencies, but at high frequencies, its characteristics cannot be evaluated unless it is analyzed as a distributed constant line and a more rigorous electromagnetic (EM) field problem. Traditionally, the effects of bonding wires have been evaluated using wire inductance per unit length using low frequency approximation [3-17]. There are also many documents [18-19] that investigated the effect of bonding wires using electromagnetic field simulation, but it is different from the connection considering the height of the chip examined in this paper.

In this paper, the author performed an electromagnetic field simulation of a typical bonding wire structure that connects a chip and a package, and evaluated the signal transmission characteristics (S-parameters). In addition, the inductance per unit length was extracted by comparing with the equivalent circuit of the distributed constant line. It turns out that the distributed constant line model is not sufficient because there are frequencies where chip-board resonance occurs. The miniaturization of semiconductors has made it possible to handle millimeter-wave bands [20-23], which has become a very important issue in chip-package transmission.

2. Analysis Model

Figure 1 shows a model of the bonding wire that connects the chip and the package. The circuit layer of the chip is filled with SiO$_2$ having a relative permittivity of 4, the height is set to 5 µm. The pads on the chip have a Ground-Signal-Ground (GSG) structure with a thickness of 1 µm, 70 µm square, and 100 µm pitch. The ground pads on both sides of the signal pad are connected to the ground of the chip using vias. The pads on the package have a Ground-Signal-Ground (GSG) structure with a thickness of 18 µm, 200 µm square and 250 µm pitch. The ground pads on both sides of the signal pad are connected to the ground of the package using vias. The radius of the bonding wire is a, extending vertically by h_1 from the pad on the chip, extending horizontally to d_1, and then connecting to the pad of the package by the shortest straight path.

Figure 2 shows an electromagnetic field simulation model. The electromagnetic field simulator based on the finite element method, COMSOL Multiphysics, was used. The lower surface, which is the ground of the package, was an electric wall (PEC), and the other five peripheral surfaces
were an absorbing boundary condition (ABC). Assuming silicon, the chip has a relative permittivity of 11.9, and the package has a relative permittivity of 3.4. The chip and package were lossless. The bonding wire and pad were assumed to be copper and had a conductivity of $\sigma = 5.8 \times 10^7$ S/m. Lumped ports with a reference impedance of 50 Ω were set for Ports 1 and Port 2.

3. RLGC Parameter Extraction

Calculate the S-parameters or Z-parameters in Fig. 1 by electromagnetic field simulation analysis. The relationship between the Z parameter and the impedance of the T-type equivalent circuit in Fig. 3 is given by the following equation.

$$
\begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
=
\begin{bmatrix}
Z_1 + Z_3 & Z_3 \\
Z_3 & Z_2 + Z_3
\end{bmatrix}
$$

(1)

From equation (1), the constant of the T-type circuit can be obtained from the Z parameter by the following equation.

$$
\begin{align*}
Z_1 &= Z_{11} - Z_3 = Z_{11} - Z_{12} \\
Z_2 &= Z_{22} - Z_3 = Z_{22} - Z_{12} \\
Z_3 &= Z_{12} = Z_{21}
\end{align*}
$$

(2)

4. Results

4.1 S parameters

Figure 5 shows the frequency characteristics of the S-parameters when $a=10$ µm and $s=100$ µm in Fig. 1. The transmission coefficient is small up to around 15 GHz, but a resonance phenomenon is observed that sharply decreases around 22 GHz. The reflectance coefficient gradually increases to the vicinity of this resonance. Figure 6 shows the electric field distribution at 10 GHz and 22 GHz. At 22 GHz, resonance due to the substrate, bonding wire, and chip is observed, which is not seen at 10 GHz.

Figure 4 shows the RLGC parameters of a distributed constant line of length Δz. Comparing Fig. 4 and Fig. 3, the following equation is obtained.

$$
\begin{align*}
[Z_1 + Z_2] &= R \Delta z + j \omega L \Delta z \\
1/Z_3 &= G \Delta z + j \omega C \Delta z
\end{align*}
$$

(3)

From equation (3), RLGC can be calculated by the following equation.

$$
\begin{align*}
R &= \text{Re}[Z_1 + Z_2] / \Delta z \\
L &= \text{Im}[Z_1 + Z_2] / (\omega \Delta z) \\
G &= \text{Re}[1/Z_3] / \Delta z \\
C &= \text{Im}[1/Z_3] / (\omega \Delta z)
\end{align*}
$$

(4)
4.2 Extracted RLGC parameters

The S-parameters in Fig. 5 are converted to Z-parameters, and the RLGC component per 1 mm extracted using Eq. (4) is shown in Fig. 7. The conductance G is a negative value because it cannot be expressed by the equivalent circuit. At low frequencies below 20 GHz, the inductance is close to 1 nH/mm. This is in good agreement with the commonly used approximation 1.15nH/mm by the following equation.

$$L = \frac{\mu_0 d}{\pi} \ln \frac{a}{d} \quad (5)$$

Eq. (5) is the inductance per unit length of two parallel lines with radius a and spacing d ($a \ll d$). However, at high frequencies above 20 GHz, there is a resonance phenomenon that cannot be explained by low frequency approximation. The capacitance per unit length of two parallel lines is 0.0097pF/mm according to the following equation.

$$C = \frac{\pi \varepsilon_0}{\ln \frac{a}{d}} \quad (6)$$

Using these values, Z-parameters were calculated from Eqs. (1) and (2) and converted to S-parameters. Figure 8 shows the results of comparison with the electromagnetic field simulation values. The difference at low frequencies is not large, but resonance near 22 GHz cannot be obtained with the equivalent circuit model.

4.3 Wire radius effects

Table 1 shows the difference in inductance value depending on the wire radius. It was found that the thicker the wire, the smaller the inductance, which is consistent with the tendency in Eq. (5).

![Fig. 8 Comparison between EM simulation and equivalent circuit model](image)

Table 1 Inductance with wire radius a. ($s=100 \mu m$, $w_c=1 \text{ mm}$)

<table>
<thead>
<tr>
<th>a (μm)</th>
<th>Inductance (nH/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.13</td>
</tr>
<tr>
<td>10</td>
<td>0.91</td>
</tr>
<tr>
<td>20</td>
<td>0.67</td>
</tr>
</tbody>
</table>

4.4 Wire length effects

![Fig. 9 Variation of S_{21} with average bonding wire lengths in Table 2.](image)

Table 2 Total lengths of bonding wires with spacing s. ($a=10 \mu m$, $w_c=1 \text{ mm}$)

<table>
<thead>
<tr>
<th>s (μm)</th>
<th>Signal-Signal</th>
<th>GND-GND</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>393.7</td>
<td>421.5</td>
<td>407.6</td>
</tr>
<tr>
<td>100</td>
<td>428.2</td>
<td>454.8</td>
<td>441.5</td>
</tr>
<tr>
<td>200</td>
<td>508.3</td>
<td>531.4</td>
<td>519.9</td>
</tr>
<tr>
<td>400</td>
<td>688.9</td>
<td>706.1</td>
<td>697.5</td>
</tr>
</tbody>
</table>

The change in characteristics due to the length of the bonding wire was investigated. The distance s between the chip end in Fig. 1 and the pad end on the package was changed. Table 2 shows the length of the bonding wire with respect to s. Figure 9 shows the change in the transmission coefficient S_{21} due to the change in the bonding wire length. It can be seen that the resonance frequency decreases as the
wire length increases. It was confirmed that the change in inductance was small in s.

4.5 Chip size effects

Figure 10 shows the change in the transmission coefficient S_{21} depending on the chip width. It can be confirmed that the larger the chip, the lower the frequency of resonance.

5. Conclusions

The wire bonding characteristics between the chip and the package were evaluated by electromagnetic field simulation. Resonance at a specific frequency, which cannot be obtained with the equivalent circuit model, was confirmed. Since the frequency at which resonance occurs depends on the length of the bonding wire and the width of the chip, it was found that the resonance is caused by the leakage of electromagnetic waves to the lower part of the bonding wire and chip. Below the resonance frequency, the conventional low-frequency approximation model was effective, and it was found that the inductance was about 1 nH/mm. In the future, it will be necessary to study a structure that does not cause resonance in the frequency band used.

Acknowledgments

The author acknowledges KESCO CO., LTD. for their support of COMSOL application builder compiler. This work was supported in part by NICT and Research Center for Biomedical Engineering (Hiroshima Univ.).

References