An Overflow/Underflow-Free Fixed-Point Bit-Width Optimization Method for OS-ELM Digital Circuit

Mineto TSUKADA(a) and Hiroki MATSUTANI(b),

SUMMARY Currently there has been increasing demand for real-time training on resource-limited IoT devices such as smart sensors, which realizes standalone online adaptation for streaming data without data transfers to remote servers. OS-ELM (Online Sequential Extreme Learning Machine) has been one of promising neural-network-based online algorithms for on-chip learning because it can perform online training at low computational cost and is easy to implement as a digital circuit. Existing OS-ELM digital circuits employ fixed-point data format and the bit-widths are often manually tuned, however, this may cause overflow or underflow which can lead to unexpected behavior of the circuit. For on-chip learning systems, an overflow/underflow-free design has a great impact since online training is continuously performed and the intervals of intermediate variables will dynamically change as time goes by. In this paper, we propose an overflow/underflow-free bit-width optimization method for fixed-point digital circuits of OS-ELM. Experimental results show that our method realizes overflow/underflow-free OS-ELM digital circuits with 1.0x - 1.5x more area cost compared to the baseline simulation method where overflow or underflow can happen.

1. Introduction

Currently there has been increasing demand for real-time training on resource-limited IoT devices (e.g., smart sensors and micro computers), which realizes standalone online adaptation for streaming data without transferring data to remote servers, and avoids additional power consumption for communication [1]. OS-ELM (Online Sequential Extreme Learning Machine) [2] has been one of promising neural-network-based online algorithms for on-chip learning because it can perform online training at low computational cost and is easy to implement as a digital circuit. Several papers have proposed design methodologies and implementations of OS-ELM digital circuits and shown that OS-ELM can be implemented in a small-size FPGA and still be able to perform online training in less than one millisecond [1,3-5].

Existing OS-ELM digital circuits often employ fixed-point data format and the bit-widths are manually tuned according to the requirements (e.g., resource and timing constraints), however, this may cause overflow or underflow which can lead to unexpected behavior of the circuit. A lot of works have proposed bit-width optimization methods that analytically derive the lower and upper bounds of intermediate variables and automatically optimize the fixed-point data format, ensuring that overflow/underflow never happens [6-8]. For on-chip learning systems, an overflow/underflow-free design has a significant impact because online training is continuously performed and the intervals of intermediate variables will dynamically change as time goes by.

In this paper we propose an overflow/underflow-free bit-width optimization method for fixed-point OS-ELM digital circuits. This work makes the following contributions.

• We propose an interval analysis method for OS-ELM using affine arithmetic [9], one of the most widely-used interval arithmetic models. Affine arithmetic has been used in a lot of existing works for determining optimal integer bit-widths that never cause overflow and underflow.

• In affine arithmetic, division is defined only if the denominator does not include zero; otherwise the algorithm cannot be represented in affine arithmetic. OS-ELM’s training algorithm contains one division and we analytically prove that the denominator does not include zero. Based on this proof, we also propose a mathematical trick to safely represent OS-ELM in affine arithmetic.

• Affine arithmetic can represent only fixed-length computation graphs and unbounded loops are not supported in affine arithmetic. However, OS-ELM’s training algorithm is an iterative algorithm where current outputs are used as the next inputs endlessly. We propose an empirical solution for this problem based on simulation results, and verify its effectiveness in the evaluation section.

• We evaluate the performance of our interval analysis method, using an fixed-point IP core called OS-ELM Core to demonstrate the practicality of our method.

The rest of this paper is organized as follows; Section 2 gives a brief introduction of basic technologies behind this work. Our interval analysis method is proposed in Section 3. Section 4 briefly describes the design of OS-ELM Core. The proposed interval analysis method is evaluated in Section 5. Section 7 concludes this paper. Please refer to Table 4 and Table 5 for the...
ELM is a batch learning algorithm; ELM needs to re-
train with the whole training dataset, including training samples already learned in the past, in order to learn new training samples. OS-ELM [2] is an ELM variant that can perform online learning instead of batch learning. Suppose the ith training samples \(\{X_i \in \mathbb{R}^{k \times n}, T_i \in \mathbb{R}^{k \times m}\} \) of batch size = \(k_i \) is given, OS-ELM computes the ith optimal solution \(\beta_i \) in the following formula.

\[
P_i = P_{i-1} - \frac{P_{i-1}H_i P_{i-1}^T (I + H_i P_{i-1} H_i^T)^{-1} H_i}{1 + h_i P_{i-1} h_i^T} \\
\beta_i = \beta_{i-1} + P_i h_i^T (t_i - h_i \beta_{i-1})
\]

where \(H_i \equiv G(X_i \cdot \alpha + b) \). \(P_0 \) and \(\beta_0 \) are computed as follows.

\[
P_0 = (H_0^T H_0)^{-1} \\
\beta_0 = P_0 b_0
\]

Note that OS-ELM and ELM produce the same solution as long as the training dataset is the same.

Specially, when \(k_i = 1 \) Equation 4 can be simplified into

\[
P_i = P_{i-1} - \frac{P_{i-1} h_i^T h_i P_{i-1}^T}{1 + h_i P_{i-1} h_i^T} \\
\beta_i = \beta_{i-1} + P_i h_i^T (t_i - h_i \beta_{i-1})
\]

where \(h_i \equiv G(x_i \cdot \alpha + b) \). Note that \(x_i/t_i/h_i \) is a special case of \(X_i/T_i/H_i \) when \(k_i = 1 \). Equation 6 is more costless than Equation 4 in terms of computational complexity since a costly matrix inverse \((I + H_i P_{i-1} H_i^T)^{-1}\) has been replaced with a simple reciprocal operation \(\frac{1}{1 + h_i P_{i-1} h_i^T} \) [1]. In this work we refer to Equation 6 as “training algorithm” of OS-ELM. Equation 5 is referred to as “initialization algorithm”.

The prediction algorithm is below.

\[
y = G(x \cdot \alpha + b) \beta,
\]

where \(y \) is a special case of \(Y \) when the batch size is equal to 1. We refer to Equation 7 as “prediction algorithm” of OS-ELM.

2.3 Interval Analysis

To realize an overflow/underflow-free fixed-point design you need to know the interval of each variable and allocate sufficient integer bits that never cause overflow and underflow. Existing interval analysis methods for fixed-point design are categorized into a (1) dynamic method or a (2) static method [11]. Dynamic methods [12–15] often take a simulation-based approach with tons of test inputs. It is known that dynamic methods often produce a better result close to the true interval compared to static methods, although they tend to take a long time due to exhaustive search and may encounter overflow or underflow if unseen inputs are found in runtime.
Static methods [6–8, 16, 17], on the other hand, take a more analytical approach; they often involve solving equations and deriving upper and lower bounds of each variable without test inputs. Static methods produce a more conservative result (i.e., a wider interval) compared to dynamic methods, although the result is analytically guaranteed. In this work, we employ a static method for interval analysis as the goal is to realize an overflow/underflow-free fixed-point OS-ELM digital circuit with analytical guarantee.

Interval arithmetic (IA) [18] is one of the oldest static interval analysis methods. In IA, every variable is represented as an interval [x1, x2] where x1 and x2 are the lower and upper bounds of the variable. Basic operations {+, −, ×} are defined as follows:

\[
\begin{align*}
[x_1, x_2] + [y_1, y_2] &= [x_1 + y_1, x_2 + y_2] \\
[x_1, x_2] - [y_1, y_2] &= [x_1 - y_2, x_2 - y_1] \\
[x_1, x_2] \times [y_1, y_2] &= [\min(x_1y_1, x_1y_2, x_2y_1, x_2y_2), \max(x_1y_1, x_1y_2, x_2y_1, x_2y_2)]
\end{align*}
\]

IA guarantees intermediate intervals as long as input intervals are known. However, IA suffers from the dependency problem; for example, x − x where x ∈ [x1, x2] (x1 < x2) should be 0 in ordinary algebra, although the result in IA is [x1 − x2, x2 − x1], a wider interval than the true tightest range [0, 0], which makes subsequent intervals get wider and wider. The cause of this problem is that IA ignores correlation of variables; x − x is treated as a self-subtraction in ordinary algebra but it is regarded as a subtraction between independent intervals in IA.

Affine arithmetic (AA) [9] is a refinement of IA proposed by Stolfi et al. AA keeps track of correlation of variables and is known to obtain tighter bounds close to the true range compared to IA. AA has been applied into a lot of fixed-point/floating-point bit-width optimization systems [6, 16, 19, 20] and still widely used in recent works [17, 21, 22]. We use AA throughout this work.

2.4 Affine Arithmetic

In AA, the interval of variable x is represented in an affine form \(\hat{x} \) given by:

\[
\hat{x} = x_0 + x_1\epsilon_1 + x_2\epsilon_2 + \cdots + x_n\epsilon_n,
\]

where \(\epsilon_i \in [-1, 1] \). \(x_i \) is a coefficient and \(\epsilon_i \) is an uncertainty variable which takes \([-1, 1]\); an affine form is a linear combination of uncertainty variables.

The interval of \(\hat{x} \) can be computed as below.

\[
\begin{align*}
[\hat{x}_1, \hat{x}_2] &= [x_1 + y_1, x_2 + y_2] \\
[\hat{x}_1, \hat{x}_2] - [y_1, y_2] &= [x_1 - y_2, x_2 - y_1] \\
[\hat{x}_1, \hat{x}_2] \times [y_1, y_2] &= [\min(x_1y_1, x_1y_2, x_2y_1, x_2y_2), \max(x_1y_1, x_1y_2, x_2y_1, x_2y_2)]
\end{align*}
\]

\(\hat{x} \) computes the lower bound of \(\hat{x} \) and \(\sup(\hat{x}) \) is the upper bound. Conversely a variable that ranges \([a, b]\) can be converted into an affine form \(\hat{x} = x_0 + x_1\epsilon_1 \) with

\[
x_0 = \frac{b + a}{2}, \quad x_1 = \frac{b - a}{2}.
\]

Addition/subtraction between affine forms \(\hat{x} \) and \(\hat{y} \) is simply defined as \(\hat{x} \pm \hat{y} = (x_0 \pm y_0) + \sum_i (x_i \pm y_i)\epsilon_i \). However, multiplication \(\hat{x} \cdot \hat{y} \) is a little bit complicated:

\[
\hat{x} \cdot \hat{y} = x_0y_0 + \sum_i (x_0y_i + y_0x_i)\epsilon_i + Q
\]

\[
Q = \sum_i (x_i\epsilon_i) \sum_i (y_i\epsilon_i)
\]

Note that \(Q \) is not an affine form (i.e., \(Q \) is not a linear combination of \(\epsilon_i \)) and it needs approximation to become an affine form. A conservative approximation shown below is often taken [6, 16, 17].

\[
Q \approx uv\epsilon_*, \quad u = \sum_i |x_i|, \quad v = \sum_i |y_i|,
\]

where \(\epsilon_* \in [-1, 1] \) is a new uncertainty variable. Note that \(uv\epsilon_* \geq \sum_i (x_i\epsilon_i) \sum_i (y_i\epsilon_i) \). See Figure 2 for a simple tutorial of AA.

Division \(\hat{x} = \frac{x}{y} \) is often separated into \(\hat{x} \cdot \frac{1}{y} \). There are mainly two approximation methods to compute \(\frac{1}{y} \): (1) the min-max approximation and (2) the chebyshev approximation. Here we show the definition of \(\frac{1}{y} \) with the min-max approximation.

\[
p = \begin{cases} -\frac{x}{y} & \text{(if } b > a > 0) \\ \frac{x}{y} & \text{(if } 0 > b > a) \end{cases}
\]

\[
f = \frac{(a + b)^2}{2ab^2}, \quad d = \frac{(a - b)^2}{2ab^2}
\]

\[
\frac{1}{y} = (p \cdot y_0 + q) + \sum_i p \cdot (y_i\epsilon_i) + d\epsilon_*,
\]

Fig. 2 A simple tutorial of AA. In AA all input intervals \((a, b, c)\) in this tutorial must be known. Affine forms of \(a, b, c, d, e, f\) are computed as follows; \(a = 0.5 + 4.5\epsilon_a\), \(b = 3.0 + \epsilon_b\), \(c = 4.0\), \(d = 3.5 + 4.5\epsilon_a + \epsilon_b\), \(e = -1.0 + \epsilon_e\), \(f = -3.5 - 4.5\epsilon_a + 2.5\epsilon_b + 5.5\epsilon_f\). We can derive interval\((d) = [-2.0, 9.0]\), interval\((e) = [-2.0, 0.0]\), and interval\((f) = [-16.0, 9.0]\) from Equation 10.

\[
\text{interval}(\hat{x}) = [\inf(\hat{x}), \sup(\hat{x})]
\]

\[
\inf(\hat{x}) = x_0 - \sum_i |x_i|
\]

\[
\sup(\hat{x}) = x_0 + \sum_i |x_i|
\]
Algorithm 1 $T(x_t, t_1, \alpha, b, P_{i-1}, \beta_{i-1}) \rightarrow \{P_t, \beta_t\}$ $(1 \leq i \leq N)$.

Require: $x_t, t_1, \alpha, b, P_{i-1}, \beta_{i-1}$

Ensure: $h_t = x_t - \alpha + b$

$P_t = P_{i-1} - \frac{1}{h_t} h_t P_{i-1} h_t^T$,

$\beta_t = \beta_{i-1} + P_t h_t^T (t_1 - h_t \beta_{i-1})$

1: $e_i \leftarrow x_t - \alpha$
2: $h_t \leftarrow e_i + b$
3: $\gamma_i^{(1)} \leftarrow P_{i-1} - h_t^T$
4: $\gamma_i^{(2)} \leftarrow h_t \cdot P_{i-1}$
5: $\gamma_i^{(3)} \leftarrow \gamma_i^{(1)} \gamma_i^{(3)}$
6: $\gamma_i^{(4)} \leftarrow \gamma_i^{(2)} h_t^T$
7: $\gamma_i^{(5)} \leftarrow \gamma_i^{(4)} + 1$
8: $\gamma_i^{(6)} \leftarrow \gamma_i^{(3)} / \gamma_i^{(5)}$
9: $P_t \leftarrow P_t - \gamma_i^{(6)}$
10: $\gamma_i^{(7)} \leftarrow P_t \cdot h_t^T$
11: $\gamma_i^{(8)} \leftarrow h_t \cdot \beta_{i-1}$
12: $\gamma_i^{(9)} \leftarrow t_1 - \gamma_i^{(8)}$
13: $\gamma_i^{(10)} \leftarrow \gamma_i^{(7)} \gamma_i^{(9)}$
14: $\beta_t \leftarrow \beta_{i-1} + \gamma_i^{(10)}$
15: return $\{P_t, \beta_t\}$

Algorithm 2 $P(x, \alpha, b, \beta) \rightarrow y$

Require: x, α, b, β

Ensure: $y = (x \cdot \alpha + b) \beta$

1: $e \leftarrow x - \alpha$
2: $h \leftarrow e + b$
3: $y \leftarrow h - \beta$
4: return y

where $a = \inf(\hat{y})$ and $b = \sup(\hat{y})$. Note that $\frac{1}{\hat{y}}$ is defined only if $b > a > 0$ or $0 > b > a$. The denominator \hat{y} must not include zero.

2.5 Determination of Integer Bit-Width

Suppose we have an affine form \hat{x}, the minimum number of integer bits that never cause overflow and underflow is computed by:

$I_B = \log_2(\max(\inf(\hat{x}), \sup(\hat{x}))) + 1 + \alpha,$

\[\alpha = \begin{cases}
1 & \text{(if signed)} \\
0 & \text{else}
\end{cases}\] (15)

I_B represents the optimal integer bit-width.

3. AA-Based Interval Analysis for OS-ELM

In this section we propose the AA-based interval analysis method for OS-ELM. The process is two-fold: (1) Build the computation graph equivalent to OS-ELM. (2) Compute the affine form and interval for every variable existing in OS-ELM, using Equation 10. Figure 3 shows computation graphs for OS-ELM. “Training graph” corresponds to the training algorithm (Equation 6), and “prediction graph” corresponds to the prediction algorithm (Equation 7).

Algorithm 1 represents a sub-graph that computes a single iteration of the OS-ELM training algorithm. Training graph concatenates N sub-graphs, where N is the total number of training steps. Training graph takes $\{x_1, \ldots, x_N, t_1, \ldots, t_N, \alpha, b, P_0, \beta_0\}$ as input and outputs $\{P_N, \beta_N\}$. $P(x, \alpha, b, \beta) \rightarrow y$ defined in Algorithm 2 represents prediction graph. Prediction graph takes $\{x, \alpha, b, \beta\}$ as input and outputs y.

The goal is to obtain the intervals of $\{\gamma_1^{(1)}, \ldots, \gamma_i^{(10)}, P_t, \beta_t, e_i, h_t\}$ $(1 \leq i \leq N)$ for training graph and (e, h, y) for prediction graph, through AA. In this paper, the interval of a matrix $A \in \mathbb{R}^{n \times n}$ is computed as follows.

\[
\text{interval}(\hat{A}) = [\inf(\hat{A}), \sup(\hat{A})] = [\inf(\hat{A}), \sup(\hat{A})],
\]

\[
\inf(\hat{A}) = \min(\inf(\hat{A}[0,0]), \ldots, \inf(\hat{A}[u-1,v-1]))
\]

\[
\sup(\hat{A}) = \max(\sup(\hat{A}[0,0]), \ldots, \sup(\hat{A}[u-1,v-1])),
\]

(16)

where \hat{A} is the affine form of A, and $\hat{A}_{i,j}$ is the ij element of \hat{A}.

3.1 Constraints

Remember that all input intervals must be known in AA; in other words the intervals of $\{x_1, \ldots, x_N, t_1, \ldots, t_N, \alpha, b, P_0, \beta_0\}$ for training graph and $\{x, \alpha, b, \beta\}$ for prediction graph must be given. In this work we assume that the intervals of $\{x, x_1, \ldots, x_N, t_1, \ldots, t_N\}$ are $[0,1]$, and those of $\{\alpha, b\}$ are $[-1,1]$. $\{P_0, \beta_0\}$ is computed by Equation 5. The interval of β (an input of prediction graph) is computed in the way described in Section 3.3.

3.2 Interval Analysis for Training Graph

The goal of training graph is to find the intervals of $\{\gamma_1^{(1)}, \ldots, \gamma_i^{(10)}, P_t, \beta_t, e_i, h_t\}$ for $1 \leq i \leq N$, however, we have to deal with a critical problem; OS-ELM is an online learning algorithm and the total number of training steps N is unknown as training may occur in
To determine a “reasonable” value of \(N \) for training graph.

3.2.1 Determination of \(N \)

To determine \(N \), we conducted an experiment to analyze the intervals of \(\{ \gamma_{i}^{(1)}, \ldots, \gamma_{i}^{(10)} \} \) for \(1 \leq i \leq N \). The procedure is as follows: (1) Implement OS-ELM’s initialization and training algorithms in double-precision format. (2) Compute initialization algorithm using initial training samples of Digits [23] dataset (see Table 1 for details). \{ \(P_{0}, \beta_{0} \) \} is obtained. (3) Compute training algorithm by one step using online training samples. \{ \(P_{k}, \beta_{k} \) \} is obtained if \(i = k \). (4) Generate 1,000 random training samples \{ \(x, t \) \} with uniform distribution of \([0, 1]\). Feed all the random samples into training algorithm of step \(k \) and measure the maximum and minimum values for each of \(\{ \gamma_{i}^{(1)}, \ldots, \gamma_{i}^{(10)} \} \). (5) Iterate 3-4 until all online training samples run out.

Figure 4 shows the result. We observed that all the intervals gradually converged or kept constant as \(i \) proceeds. Similar outcomes were observed on other datasets too (see Section 5.3 for the entire result on multiple datasets). From these outcomes, we make a hypothesis that \(A_{i} \in \{ \gamma_{i}^{(1)}, \ldots, \gamma_{i}^{(10)} \}, P_{i}, \beta_{i}, e_{i}, h_{i} \) roughly satisfies \([\min(A_{1}), \max(A_{1})] \supseteq [\min(A_{i}), \max(A_{i})] \) for \(2 \leq i \), in other words, the interval of \(A_{1} \) can be used as those of \(A_{1}, \ldots, A_{N} \). This hypothesis is verified in Section 5.3, using multiple datasets.

Based on the hypothesis we set \(N = 1 \) in training graph. The interval analysis method for training graph is summarized as follows.

1. Build training graph \(T(x_{0}, t_{0}, \alpha, b, P_{0}, \beta_{0}) \rightarrow \{ P_{1}, \beta_{1} \} \).
2. Compute \(\{ \gamma_{1}^{(1)}, \ldots, \gamma_{1}^{(10)} \}, P_{1}, \beta_{1}, e_{1}, h_{1} \) using AA. The intervals are used as those of \(\{ \gamma_{i}^{(1)}, \ldots, \gamma_{i}^{(10)} \}, P_{i}, \beta_{i}, e_{i}, h_{i} \) (\(i \geq 1 \)).

3.2.2 Division

OS-ELM’s training algorithm has a division \(\frac{P_{i-1}^{-1}h_{i}^{T}h_{i}P_{i-1}}{1+h_{i}P_{i-1}h_{i}^{T}} \).

As mentioned in Section 2.4, the denominator \(\gamma_{i}^{(5)} = 1 + h_{i}P_{i-1}h_{i}^{T} \) must not take zero. In the rest of this section \(0 \notin \gamma_{i}^{(5)} \) is proven for \(i \geq 1 \).

Theorem 1. \(P_{i-1} \) is positive-definite for \(i \geq 1 \).

Proof. We first prove that \(P_{0} \) is positive-definite.

- \(P_{0}^{-1} \) is positive-semidefinite due to \(uP_{0}^{-1}u^{T} = uH_{0}^{T}H_{0}u^{T} = (uh_{i}^{T}) \cdot (uh_{i}^{T})^{T} \geq 0 \), where \(u \in \mathbb{R}^{1 \times N} \) represents an arbitrary vector.
- \(P_{0}^{-1} = H_{0}^{T}H_{0} \) is positive-definite since \(H_{0}^{T}H_{0} \) is assumed to be a regular matrix in OS-ELM.
- \(P_{0} \) is positive-definite since the inverse of a positive-definite matrix is positive-definite.

Next, we prove that \(P_{1} \) is positive-definite. Equation 17 is derived by applying the sherman-morrison formula\(^{\dagger}\) to Equation 6.

\[
P_{i} = (P_{i-1}^{-1} + h_{i}^{T}h_{i})^{-1}
\]

- \(P_{1} = (P_{0}^{-1} + h_{1}^{T}h_{1})^{-1} \) holds by substituting \(i = 1 \).
- \(h_{i}^{T}h_{i} \) is positive-semidefinite due to \(uh_{i}^{T}h_{i}u^{T} = (uh_{i}^{T}) \cdot (uh_{i}^{T})^{T} \geq 0 \).
- \(P_{i}^{-1} = (P_{0}^{-1} + h_{i}^{T}h_{1}) \) is positive-definite since it is the sum of a positive-definite matrix \(P_{0}^{-1} \) and a positive-semidefinite matrix \(h_{i}^{T}h_{1} \).
- \(P_{i} \) is positive-definite since it is the inverse of a positive-definite matrix \(P_{i}^{-1} \).

By repeating the above logic, \(P_{0}, \ldots, P_{i-1} (i \geq 1) \) are all positive-definite.

Theorem 2. \(h_{i}P_{i-1}h_{i}^{T} > 0 \) for \(i \geq 1 \).

Proof. An \(n \times n \) positive-definite matrix \(V \in \mathbb{R}^{n \times n} \) satisfies the following inequality.

\[
u^{T}V^{-1}u > 0,
\]

\[
\left(V + u^{T}w \right)^{-1} = V^{-1} - \frac{V^{-1}u^{T}wV^{-1}}{1+w^{T}V^{-1}u^{T}} \quad (V \in \mathbb{R}^{k \times k}, u \in \mathbb{R}^{1 \times k}, w \in \mathbb{R}^{1 \times k}, k \in \mathbb{N}).
\]
module executes prediction algorithm. The output of prediction algorithm can be safely represented in AA.

Note that interval $[\gamma_i^{(5)}]$ can include zero because interval $(\gamma_i^{(5)})$ can be wider than the true interval of γ_i. To tackle this problem we propose to compute $\min(1, \inf(\gamma_i^{(5)}))$ for the lower bound of $\gamma_i^{(5)}$ instead of $\inf(\gamma_i^{(5)})$. This trick prevents $\gamma_i^{(5)}$ from including zero and at the same time makes the interval close to the true interval. Thanks to this trick OS-ELM’s training algorithm can be safely represented in AA.

3.3 Interval Analysis for Prediction Graph

Prediction graph takes $\{x, \beta\}$ as input. The interval of β should be that of β_i over $0 \leq i \leq N$, more specifically, $0 \leq i \leq 1$ ($N = 1$). We propose to compute $\min(\inf(\beta_{0[u,v]}), \inf(\beta_{1[u,v]}))$ for the lower bound of $\beta_{[u,v]}$ and $\max(\sup(\beta_{0[u,v]}), \sup(\beta_{1[u,v]}))$ as the upper bound, where $\beta_{[u,v]}$ represents the uv element of β.

4. OS-ELM Core

We developed OS-ELM Core, a fixed-point IP core that implements OS-ELM algorithms, to verify the proposed interval analysis method. All integer bit-widths of OS-ELM Core are parametrized, and the result of proposed interval analysis method is used as the arguments. The PYNQ-Z1 FPGA board [28] (280 BRAM blocks, 220 DSP slices, 106,400 flip-flops, and 53,200 LUT instances) is employed as the evaluation platform.

Figure 5 shows the block diagram of OS-ELM Core. OS-ELM Core employs axi-stream protocol for input/output interface with 64-bit data width. Training module executes OS-ELM’s training algorithm then updates P and β managed in parameter buffer. Prediction module reads an input x from input buffer and executes prediction algorithm. The output of prediction module y is buffered in output buffer. Both training and prediction modules use one adder and one multiplier in a matrix product operation, and one arithmetic unit (i.e. adder, multiplier, or divisor) in a element-wise operation, regardless of the size of matrix, to make hardware resource cost as small as possible. All the arrays existing in OS-ELM Core are implemented with BRAM blocks (18 kb/block), and all the fixed-point arithmetic units (i.e. adder, multiplier, and divisor) are with DSP slices.

5. Evaluation

In this section we evaluate the proposed interval analysis method. All the experiments here were executed on a server machine (Ubuntu 20.04, Intel Xeon E5-1650 3.60GHz, DRAM 64GB, SSD 500GB). Table 1 lists the classification datasets used for evaluation of our method. For all the datasets, the intervals of input x and target t are normalized into $[0,1]$. Parameters b and α are randomly generated with the uniform distribution of $[-1,1]$. The model size for each dataset is shown in “Model Size” column. The number of hidden nodes is set to the number that performed the best test accuracy in a given search space; search spaces for Digits, Iris, Letter, Credit, and Drive are $\{32, 48, 64, 96, 128\}$, $\{3, 4, 5, 6, 7\}$, $\{8, 16, 32, 64, 128\}$, $\{4, 8, 16, 32, 64\}$, and $\{32, 64, 96, 128\}$ respectively.
1,000 random training samples. Table 3 presents the result of the proposed method for each dataset. Here is a brief introduction of the simulation method. In this section we first show the result of the proposed method (ours) for each dataset.

5.1 Optimization Result

In this section we first show the result of the proposed method for each dataset, comparing with an ordinary simulation-based interval analysis method. Here is a brief introduction of the simulation method: (1) Implement OS-ELM’s initialization, prediction, and training algorithms in double-precision format. (2) Execute initialization algorithm using initial training samples. \{P_0, \beta_0\} is obtained. (3) Execute training algorithm by one step using online training samples. \{P_k, \beta_k\} is obtained if \(i = k \). (4) Generate 1,000 random training samples \(\{x, t\} \) with uniform distribution of \([0, 1]\). (5) Feed all the random samples into training algorithm of step = \(k \) and measure the values of \(\gamma^{(5)}_k = \sum \gamma_i^{(5)} \). (6) Feed all the random samples into prediction algorithm and measure the values of \(y \). (7) Repeat 3-6 until all online training samples run out.

Table 2

Intervals obtained from simulation (sim) and the proposed interval analysis method (ours) for each dataset.

<table>
<thead>
<tr>
<th>(\gamma_1) (sim)</th>
<th>(\gamma_1) (ours)</th>
<th>(\gamma_2) (sim)</th>
<th>(\gamma_2) (ours)</th>
<th>(\gamma_3) (sim)</th>
<th>(\gamma_3) (ours)</th>
<th>(\gamma_4) (sim)</th>
<th>(\gamma_4) (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.942, 0.694]</td>
<td>[0.942, 0.694]</td>
<td>[0.446, 0.482]</td>
<td>[0.371, 0.975]</td>
<td>[1.37, 10.7]</td>
<td>[1.37, 10.7]</td>
<td>[0.146, 3.93]</td>
<td>[0.146, 3.93]</td>
</tr>
<tr>
<td>[0.155, 0.155]</td>
</tr>
<tr>
<td>[0.115, 0.115]</td>
</tr>
<tr>
<td>[32.9, 32.9]</td>
</tr>
<tr>
<td>[6.96e, 6.92e]</td>
</tr>
<tr>
<td>[6.56e, 6.56e]</td>
</tr>
<tr>
<td>[0.15]</td>
<td>[0.15]</td>
<td>[0.15]</td>
<td>[0.15]</td>
<td>[0.15]</td>
<td>[0.15]</td>
<td>[0.15]</td>
<td>[0.15]</td>
</tr>
<tr>
<td>[3.57]</td>
<td>[3.57]</td>
<td>[3.57]</td>
<td>[3.57]</td>
<td>[3.57]</td>
<td>[3.57]</td>
<td>[3.57]</td>
<td>[3.57]</td>
</tr>
<tr>
<td>[0.32]</td>
<td>[0.32]</td>
<td>[0.32]</td>
<td>[0.32]</td>
<td>[0.32]</td>
<td>[0.32]</td>
<td>[0.32]</td>
<td>[0.32]</td>
</tr>
<tr>
<td>[3.04]</td>
<td>[3.04]</td>
<td>[3.04]</td>
<td>[3.04]</td>
<td>[3.04]</td>
<td>[3.04]</td>
<td>[3.04]</td>
<td>[3.04]</td>
</tr>
<tr>
<td>[6.56e]</td>
<td>[6.56e]</td>
<td>[6.56e]</td>
<td>[6.56e]</td>
<td>[6.56e]</td>
<td>[6.56e]</td>
<td>[6.56e]</td>
<td>[6.56e]</td>
</tr>
<tr>
<td>[6.94]</td>
<td>[6.94]</td>
<td>[6.94]</td>
<td>[6.94]</td>
<td>[6.94]</td>
<td>[6.94]</td>
<td>[6.94]</td>
<td>[6.94]</td>
</tr>
</tbody>
</table>

Table 3

The “Ops” column shows the total number of arithmetic operations, and the “Overflow/Underflow” column shows the number of overflow or underflows that happened during the experiment. The rate of overflow/underflows is written in (\%).

<table>
<thead>
<tr>
<th></th>
<th>Ops</th>
<th>Overflow/Underflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digits (sim)</td>
<td>5,512,688,688</td>
<td>0</td>
</tr>
<tr>
<td>Digits (ours)</td>
<td>4,714,041</td>
<td>197,342 (4.19%)</td>
</tr>
<tr>
<td>Iris (sim)</td>
<td>17,793,216,000</td>
<td>0</td>
</tr>
<tr>
<td>Iris (ours)</td>
<td>11,039,328,000</td>
<td>0</td>
</tr>
<tr>
<td>Drive (sim)</td>
<td>187,259,827,356</td>
<td>5,467,945,469 (2.92%)</td>
</tr>
<tr>
<td>Drive (ours)</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

5.2 Rate of Overflow/Underflows

This section compares the simulation method introduced in Section 5.1 and the proposed method in terms of the rate of overflow/underflows, using OS-ELM Core. The experimental procedure is as follows: (1) Execute the simulation method and convert the result into integer bit-widths using Equation 15 (an extra bit was added to each bit-width to reduce overflow/underflows). (2) Execute the proposed method and convert the result into bit-widths. (3) Synthesize two OS-ELM Cores using the bit-widths obtained from 1 and 2. (4) Execute training by one step in both OS-ELM Cores using online training samples. (5) Generate
ate 250 random training samples \(\{x, t\} \) with uniform distribution of \([0, 1]\). \(\triangledown \) Feed all the random samples into the training module and the prediction module for each OS-ELM Core and check the number of overflow/underflows that arose. \(\triangledown \) Repeat 4-6 until all online training samples run out.

The result is shown in Table 3. The simulation method caused no overflow or underflows in three datasets out of five, however, it suffered from as many overflow/underflows as \(2.92 \sim 4.19\%\) in the other two datasets, where a few overflow/underflows arose in an early training step and were propagated to subsequent steps, resulting in a drastic increase in overflow/underflows. This cannot be perfectly prevented as long as a random exploration is taken in interval analysis. The proposed method, on the other hand, encountered totally no overflow or underflows as it analytically derives upper and lower bounds of variables and computes sufficient bit-widths where no overflow or underflows can happen. Although the proposed method produces some redundant bits and it results in a larger area size (see Section 5.4), it safely realizes an overflow/underflow-free fixed-point OS-ELM circuit.

5.3 Verification of Hypothesis

Figure 6 shows the entire result of the experiment described in Section 3.2.1. We observed similar outcomes to Figure 4 for all the datasets, which supports our hypothesis that \(A_i \in \{\gamma_1^{(1)}, \ldots, \gamma_i^{(10)}, P_i, \beta_i, e_i, h_i\} \) roughly satisfies \([\min(A_i), \max(A_i)] \supseteq [\min(A_i), \max(A_i)]\) for \(2 \leq i\).

In iterative learning algorithms it is known that learning parameters \((\beta_i, P_i)\) in the case of OS-ELM) gradually converge to some values as training proceeds. We consider that this numerical property resulted in the convergence of the dynamic ranges of \(\beta_i\) and \(P_i\) as observed in Figure 6, then it tightened the dynamic ranges of other variables (e.g. \(\gamma_i^{(1)}, \ldots, \gamma_i^{(10)}\)) too, as a side-effect via enormous number of multiplications existing in the OS-ELM algorithm. We plan to investigate the hypothesis either by deriving an analytical proof or using a larger dataset in the future work.

5.4 Area Cost

In this section the proposed method is evaluated in terms of area cost. We refer to BRAM utilization of OS-ELM Core as “area cost”, considering that all the arrays in OS-ELM Core are implemented with BRAM blocks (i.e. the bottleneck of area cost is BRAM utilization). The proposed method is compared with the simulation method introduced in Section 5.1 to clarify how much additional area cost arises to guarantee OS-ELM Core being overflow/underflow-free. The experimental procedure is as follows: \(\triangledown \) Convert the simulation result into integer bit-widths using Equation 15 and synthesize OS-ELM Core with the optimized bit-widths. \(\triangledown \) Execute the proposed interval analysis method. Convert the result into integer bit-widths and synthesize OS-ELM Core. \(\triangledown \) Check the BRAM utilizations of our method and the simulation method. \(\triangledown \) Repeat 1-3 for all the datasets.

The experimental result is shown in Figure 7. Our method requires \(1.0x\) - \(1.5x\) more BRAM blocks to guarantee that OS-ELM Core never encounter overflow and underflow, compared to the simulation method.

Remember that a multiplication in AA causes overestimation of interval; there should be a strong correlation between the additional area cost (i.e. simulation-ours) and the number of multiplications in OS-ELM’s training and prediction algorithms.

\[
M(n, \tilde{N}, m) = 4\tilde{N}^2 + (3m + n + 1)\tilde{N}
\]

\[
M(n, \tilde{N}, m)\]

\(M(n, \tilde{N}, m)\) calculates the total number of multiplications in OS-ELM’s training and prediction algorithms, where \(n\), \(\tilde{N}\), or \(m\) is the number of input, hidden, or output nodes, respectively. Equation 19 shows that \(\tilde{N}\) has the largest impact on additional area cost, which is consistent with the result that \(2.0x\) more additional area cost was observed in Drive compared to Digits, with fewer inputs nodes (Drive: 48, Digits: 64), more hidden nodes (Drive: 64, Digits: 48), and almost the same number of hidden nodes (Drive: 11, Digits: 10). We conclude that the proposed method is highly effective especially when the model size is small, and that the number of hidden nodes has the strongest impact on additional area cost.

6. Related Work

6.1 Static Interval Analysis for Iterative Algorithms

Existing general-use static interval analysis methods, including AA, deal with iterative algorithms by expanding them into feed-forward computation graphs using loop unrolling [7-9, 18]. There must be a termination condition for the target iterative algorithm to apply loop unrolling; otherwise it cannot be represented in a feed-forward computation graph and interval analysis becomes infeasible. OS-ELM’s training algorithm has no termination condition and existing methods alone cannot realize interval analysis for OS-ELM.

Kinsman et al. proposed an SMT (satisfiability modulo theory) based static interval analysis framework designed for iterative algorithms [29] and demonstrated that the method worked for famous iterative algorithms, newton-raphson method and conjugate gradient method, however, it still cannot handle algorithms that do not have termination conditions like OS-ELM. Several papers [30-34] proposed analytical interval analysis methods for LTI (linear time invariant) circuits with feedback loops which cannot be translated into feed-forward computation graphs, but the methods
are dedicated to LTI circuits and not for OS-ELM. As far as we know this paper is the first work to realize a static interval analysis for OS-ELM by leveraging a numerical property of OS-ELM we pointed out in Section 3.2.1.

6.2 Division on Static Interval Analysis

Most of static interval analysis methods assume that all denominators within a target algorithm do not take zero [8, 9, 18], or interval analysis becomes infeasible. SMT-based methods proposed by Kinsman et al. provide a mitigation solution to handle a denominator that can take zero by forcibly adding a numerical constraint that prevents it from taking zero (e.g. $y_{0.01}$ for $z = \frac{z}{y}$), however, the constraint $y_{0.01}$ is inconsistent with the fact $0 \in y$, which can lead to overestimation or underestimation in subsequent intervals.

We took the safest strategy; we analytically proved that the denominator $\gamma_i^{(5)} = 1 + h_i P_{i-1} h_i^T$ of OS-ELM does not take zero at any $i \geq 1$, and proposed a mathematical trick based on the proof to safely represent OS-ELM in AA. Note that the contributions can apply to not only AA but also other static interval analysis methods.

7. Conclusion

In this paper we proposed an overflow/underflow-free bit-width optimization method for fixed-point OS-ELM digital circuits. In the proposed method affine arithmetic is used to estimate the intervals of intermediate variables and compute the optimal number of integer bits that never cause overflow and underflow. We clarified two critical problems in realizing the proposed method: (1) OS-ELM’s training algorithm is an itera-
Anomaly algorithm and the computation graph grows endlessly, which makes interval analysis infeasible in affine arithmetic. (2) OS-ELM’s training algorithm has a division operation and if the denominator can take zero OS-ELM can not be represented in affine arithmetic.

We proposed an empirical solution to prevent the computation graph from growing endlessly, based on simulation results. We also analytically proved that the denominator does not take zero at any training step, and proposed a mathematical trick based of the proof to safely represent OS-ELM in affine arithmetic. Experimental results confirmed that no underflow/overflow occurred in our method on multiple datasets. Our method realized overflow/underflow-free OS-ELM digital circuits with 1.0x - 1.5x more area cost compared to the baseline simulation method where overflow or circuits with 1.0x - 1.5x more area cost compared method realized overflow/underflow-free OS-ELM digital circuits with 1.0x - 1.5x more area cost compared to the baseline simulation method where overflow or circuits with 1.0x - 1.5x more area cost compared.

Fig. 7 Comparison of area cost. The green bar represents the BRAM utilization of our method and the brown bar is of the simulation method.

Table 4 Notation rules in this paper.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{x}) (static)</td>
<td>Affine form of (x).</td>
</tr>
<tr>
<td>(\hat{x}) (bold italic)</td>
<td>Vector or matrix.</td>
</tr>
<tr>
<td>(\hat{x})</td>
<td>Affine form of (x) (see Equation 16 for details).</td>
</tr>
<tr>
<td>(x^{[u,v]})</td>
<td>(uv) element of (x).</td>
</tr>
<tr>
<td>(\hat{x}^{[u,v]})</td>
<td>Affine form for the (uv) element of (x).</td>
</tr>
<tr>
<td>(f) (upright)</td>
<td>Function (e.g. (G, \sup, \inf), interval).</td>
</tr>
</tbody>
</table>

References

Table 5 Description of variables that appear in this paper. The characters used for these variables are the same as the ones used in [2].

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n, N, m \in \mathbb{N}$</td>
<td>Number of input, hidden, or output nodes of OS-ELM.</td>
</tr>
<tr>
<td>$\alpha \in \mathbb{R}^{n \times N}$</td>
<td>Non-trainable weight matrix connecting the input and hidden layers, which is initialized with random values.</td>
</tr>
<tr>
<td>$\beta \in \mathbb{R}^{N \times m}$</td>
<td>Trainable weight matrix connecting the hidden and output layers.</td>
</tr>
<tr>
<td>$P \in \mathbb{R}^{N \times N}$</td>
<td>Trainable intermediate weight matrix for training β.</td>
</tr>
<tr>
<td>$b \in \mathbb{R}^{1 \times N}$</td>
<td>Non-trainable bias vector of the hidden layer, which is initialized with random values.</td>
</tr>
<tr>
<td>G</td>
<td>Activation function applied to the hidden layer output.</td>
</tr>
<tr>
<td>$x \in \mathbb{R}^{1 \times n}$</td>
<td>Input vector.</td>
</tr>
<tr>
<td>$t \in \mathbb{R}^{1 \times m}$</td>
<td>Target vector.</td>
</tr>
<tr>
<td>$y \in \mathbb{R}^{1 \times m}$</td>
<td>Output vector.</td>
</tr>
<tr>
<td>$h \in \mathbb{R}^{1 \times N}$</td>
<td>Output vector of the hidden layer (after activation).</td>
</tr>
<tr>
<td>$e \in \mathbb{R}^{1 \times N}$</td>
<td>Output vector of the hidden layer (before activation).</td>
</tr>
<tr>
<td>$X \in \mathbb{R}^{k \times n}$</td>
<td>Input matrix of batch size $= k$ ($k \in \mathbb{N}$).</td>
</tr>
<tr>
<td>$T \in \mathbb{R}^{k \times m}$</td>
<td>Target matrix of batch size $= k$.</td>
</tr>
<tr>
<td>$Y \in \mathbb{R}^{k \times m}$</td>
<td>Output matrix of batch size $= k$.</td>
</tr>
<tr>
<td>$H \in \mathbb{R}^{k \times N}$</td>
<td>Output matrix of the hidden layer with batch size $= k$ (after activation).</td>
</tr>
<tr>
<td>$\gamma^{(1)}, \ldots, \gamma^{(10)}$</td>
<td>Intermediate variables that appear in OS-ELM’s training algorithm.</td>
</tr>
</tbody>
</table>

