A Sub-100 mW Dual-Core HOG Accelerator VLSI for Parallel Feature Extraction Processing for HDTV Resolution Video

Kosuke MIZUNO  Kenta TAKAGI  Yosuke TERACHI  Shintaro IZUMI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

Publication
IEICE TRANSACTIONS on Electronics   Vol.E96-C   No.4   pp.433-443
Publication Date: 2013/04/01
Online ISSN: 1745-1353
DOI: 10.1587/transele.E96.C.433
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Section on Solid-State Circuit Design—Architecture, Circuit, Device and Design Methodology)
Category: 
Keyword: 
HOG,  object detection,  low-power,  HDTV,  

Full Text: PDF(5.5MB)>>
Buy this Article




Summary: 
This paper describes a Histogram of Oriented Gradients (HOG) feature extraction accelerator that features a VLSI-oriented HOG algorithm with early classification in Support Vector Machine (SVM) classification, dual core architecture for parallel feature extraction and multiple object detection, and detection-window-size scalable architecture with reconfigurable MAC array for processing objects of several shapes. To achieve low-power consumption for mobile applications, early classification reduces the amount of computations in SVM classification efficiently with no accuracy degradation. The dual core architecture enables parallel feature extraction in one frame for high-speed or low-power computing and detection of multiple objects simultaneously with low power consumption by HOG feature sharing. Objects of several shapes, a vertically long object, a horizontally long object, and a square object, can be detected because of cooperation between the two cores. The proposed methods provide processing capability for HDTV resolution video (19201080 pixels) at 30 frames per second (fps). The test chip, which has been fabricated using 65 nm CMOS technology, occupies 4.22.1 mm2 containing 502 Kgates and 1.22 Mbit on-chip SRAMs. The simulated data show 99.5 mW power consumption at 42.9 MHz and 1.1 V.