Strong Identification Based on a Hard-on-Average Problem

Pino CABALLERO-GIL  

Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E88-A   No.5   pp.1117-1121
Publication Date: 2005/05/01
Online ISSN: 
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on Discrete Mathematics and Its Applications)
Category: 
Keyword: 
cryptography,  computational complexity,  algorithms,  discrete mathematics,  

Full Text: PDF(101.3KB)
>>Buy this Article


Summary: 
The aim of this work is to investigate the possibility of designing zero-knowledge identification schemes based on hard-on-average problems. It includes a new two-party identification protocol whose security relies on a discrete mathematics problem classified as DistNP-Complete under the average-case analysis, the so-called Distributional Matrix Representability Problem. Thanks to the use of the search version of the mentioned problem, the zero-knowledge property is formally proved by black-box simulation, and consequently the security of the proposed scheme is actually guaranteed. Furthermore, with the proposal of a new zero-knowledge proof based on a problem never used before for this purpose, the set of tools for designing cryptographic applications is enlarged.