
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

Critical Nodes Identification of Power Grids Based on Network Efficiency
WenJie KANG PeiDong ZHU JieXin ZHANG JunYang ZHANG
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E101D
No.11
pp.27622772 Publication Date: 2018/11/01
Online ISSN: 17451361
DOI: 10.1587/transinf.2018EDP7042
Type of Manuscript: PAPER Category: Information Network Keyword: network efficiency, giant efficiency subgraph, the algorithm of critical nodes identification, critical degree, node efficiency loss,
Full Text: PDF(1.3MB) >>Buy this Article
Summary:
Critical nodes identification is of great significance in protecting power grids. Network efficiency can be used as an evaluation index to identify the critical nodes and is an indicator to quantify how efficiently a network exchanges information and transmits energy. Since power grid is a heterogeneous network and can be decomposed into small functionallyindependent grids, the concept of the Giant Component does not apply to power grids. In this paper, we first model the power grid as the directed graph and define the Giant Efficiency subGraph (GEsG). The GEsG is the functionallyindependent unit of the network where electric energy can be transmitted from a generation node (i.e., power plants) to some demand nodes (i.e., transmission stations and distribution stations) via the shortest path. Secondly, we propose an algorithm to evaluate the importance of nodes by calculating their critical degree, results of which can be used to identify critical nodes in heterogeneous networks. Thirdly, we define node efficiency loss to verify the accuracy of critical nodes identification (CNI) algorithm and compare the results that GEsG and Giant Component are separately used as assessment criteria for computing the node efficiency loss. Experiments prove the accuracy and efficiency of our CNI algorithm and show that the GEsG can better reflect heterogeneous characteristics and power transmission of power grids than the Giant Component. Our investigation leads to a counterintuitive finding that the most important critical nodes may not be the generation nodes but some demand nodes.

