SpEnD: Linked Data SPARQL Endpoints Discovery Using Search Engines

Semih YUMUSAK  Erdogan DOGDU  Halife KODAZ  Andreas KAMILARIS  Pierre-Yves VANDENBUSSCHE  

Publication
IEICE TRANSACTIONS on Information and Systems   Vol.E100-D   No.4   pp.758-767
Publication Date: 2017/04/01
Online ISSN: 1745-1361
Type of Manuscript: Special Section PAPER (Special Section on Data Engineering and Information Management)
Category: 
Keyword: 
linked data,  semantic Web,  SPARQL endpoint,  endpoint discovery,  metasearch,  knowledge graph,  

Full Text: PDF(2.4MB)
>>Buy this Article


Summary: 
Linked data endpoints are online query gateways to semantically annotated linked data sources. In order to query these data sources, SPARQL query language is used as a standard. Although a linked data endpoint (i.e. SPARQL endpoint) is a basic Web service, it provides a platform for federated online querying and data linking methods. For linked data consumers, SPARQL endpoint availability and discovery are crucial for live querying and semantic information retrieval. Current studies show that availability of linked datasets is very low, while the locations of linked data endpoints change frequently. There are linked data respsitories that collect and list the available linked data endpoints or resources. It is observed that around half of the endpoints listed in existing repositories are not accessible (temporarily or permanently offline). These endpoint URLs are shared through repository websites, such as Datahub.io, however, they are weakly maintained and revised only by their publishers. In this study, a novel metacrawling method is proposed for discovering and monitoring linked data sources on the Web. We implemented the method in a prototype system, named SPARQL Endpoints Discovery (SpEnD). SpEnD starts with a “search keyword” discovery process for finding relevant keywords for the linked data domain and specifically SPARQL endpoints. Then, the collected search keywords are utilized to find linked data sources via popular search engines (Google, Bing, Yahoo, Yandex). By using this method, most of the currently listed SPARQL endpoints in existing endpoint repositories, as well as a significant number of new SPARQL endpoints, have been discovered. We analyze our findings in comparison to Datahub collection in detail.