Error Resilient Multiple Reference Selection for Wireless Video Transmission

Hui-Seon GANG  Shaikhul Islam CHOWDHURY  Chun-Su PARK  Goo-Rak KWON  Jae-Young PYUN  

Publication
IEICE TRANSACTIONS on Communications   Vol.E100-B   No.4   pp.657-665
Publication Date: 2017/04/01
Online ISSN: 1745-1345
Type of Manuscript: PAPER
Category: Multimedia Systems for Communications
Keyword: 
H.264/AVC,  multiple reference frame,  multimedia communication,  and error resilience,  

Full Text: PDF(3.2MB)
>>Buy this Article


Summary: 
Video quality generally suffers from packet losses caused by an unreliable channel when video is transmitted over an error-prone wireless channel. This quality degradation is the main reason that a video compression encoder uses error-resilient coding to deal with the high packet-loss probability. The use of adequate error resilience can mitigate the effects of channel errors, but the coding efficiency for bit reduction will be decreased. On the other hand, H.264/AVC uses multiple reference frame (MRF) motion compensation for a higher coding efficiency. However, an increase in the number of reference frames in the H.264/AVC encoder has been recently observed, making the received video quality worse in the presence of transmission errors if the cyclic intra-refresh is used as the error-resilience method. This is because the reference-block selection in the MRF chooses blocks on the basis of the rate distortion optimization, irrespective of the intra-refresh coding. In this paper, a new error-resilient reference selection method is proposed to provide error resilience for MRF based motion compensation. The proposed error-resilient reference selection method achieves an average PSNR enhancement up to 0.5 to 2dB in 10% packet-loss-ratio environments. Therefore, the proposed method can be valuable in most MRF-based interactive video encoding system, which can be used for video broadcasting and mobile video conferencing over an erroneous network.