
712
IEICE TRANS. ELECTRON., VOL.E94–C, NO.5 MAY 2011

INVITED PAPER Special Section on Fundamentals and Applications of Advanced Semiconductor Devices

High Transport Si/SiGe Heterostructures for CMOS Transistors
with Orientation and Strain Enhanced Mobility

Jungwoo OH†a), Jeff HUANG†, Injo OK†, Se-Hoon LEE†, Paul D. KIRSCH†, Raj JAMMY†, Nonmembers,
and Hi-Deok LEE††, Member

SUMMARY We have demonstrated high mobility MOS transistors on
high quality epitaxial SiGe films selectively grown on Si (100) substrates.
The hole mobility enhancement afforded intrinsically by the SiGe channel
(60%) is further increased by an optimized Si cap (40%) process, resulting
in a combined ∼100% enhancement over Si channels. Surface orienta-
tion, channel direction, and uniaxial strain technologies for SiGe channels
CMOS further enhance transistor performances. On a (110) surface, the
hole mobility of SiGe pMOS is greater on a (110) surface than on a (100)
surface. Both electron and hole mobility on SiGe (110) surfaces are further
enhanced in a 〈110〉 channel direction with appropriate uniaxial channel
strain. We finally address low drive current issue of Ge-based nMOSFET.
The poor electron transport property is primarily attributed to the intrinsi-
cally low density of state and high conductivity effective masses. Results
are supported by interface trap density (Dit) and specific contact resistivity
(ρc).
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1. Introduction

Strained Si channel CMOS technology has successfully ex-
tended device performance along the roadmap. Enhance-
ments have been more significant when combined with
high-k gate dielectric and metal gate technology. High mo-
bility alternative channels continue on the high performance
roadmap, where highly scaled Si channel CMOS has limi-
tations [1]–[3]. SiGe and other high mobility channels po-
tentially provide high injection velocity to achieve projected
high performance metrics.

Ge-based channel pMOSFETs fabricated on high qual-
ity epitaxial films selectively grown on Si (100) substrates
exhibit enhanced hole mobility. With a Si cap processed
on Ge channels, high-k gate dielectrics exhibited low C-V
hysteresis, interface trap density, and gate leakage current,
which are comparable to gate stack on Si channels [4]. The
mobility enhancement afforded intrinsically by the Ge chan-
nel is further increased by a Si cap process [5].

To enhance mobility in nMOS and pMOS, dual chan-
nel materials (Ge for pMOS or III-V for nMOS) or hybrid
Si surface orientation approaches have been demonstrated
[6]; however, they might increase integration complexity.
For a practical approach, the integration of high mobility
CMOS transistors on a single channel is preferable. While
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Fig. 1 HR-XTEM of gate stack with Si cap, high-k, and metal gates on
epitaxial Ge layers selectively grown on Si (100) substrates.

the mobility enhancement for Ge pMOSFETs has been well
reported, few studies have been able to improve Ge nMOS-
FET mobility after optimizing the gate stack and parasitic
resistance. Recently, enhanced electron mobility of Ge
nMOSFETs was demonstrated in long channel transistors.
[7]–[9].

2. Device Fabrication

High quality epitaxial SiGe channels are selectively grown
on shallow trench isolation-formed Si substrates. A Si cap
layer is deposited to improve the interface characteristics
and off-state current as shown in earlier report [10]. The
Si cap process mitigates the low potential barrier issues of
SiGe channels, which are major causes of the high off-state
current of small bandgap energy SiGe pMOSFETs. ALD
Hf-based gate oxide is deposited followed by the metal gate.
The TEM image (Fig. 1) shows a high-k gate dielectric and
metal gate fabricated on a SiGe-on-Si substrate.

3. Results and Discussion

Figure 2 compares C-V curves of SiGe MOS capacitors
(25% and 40% Ge). EOT of 13.6 Å and 14.0 Å were ex-
tracted using CVC model from 25% and 40% Ge capac-
itors, respectively. The physical thickness of HfSiO2 is
40 Å. Minimal C-V hysteresis at 1 MHz was measured to
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Fig. 2 C-V of SiGe MOS capacitors with low EOT and minimal hysteresis. Gate leakage current
density (Jg) of HfSiO2 dielectric on SiGe channel pMOSFETs.

Fig. 3 Gm enhancement afforded intrinsically by the SiGe channel
(Ge=25%) is further increased by an optimized Si cap, resulting in a com-
bined ∼100% enhancement over Si channels.

be 〈10 mV (25% Ge) and ∼20 mV (40% Ge). Slightly high
C-V stretch-out was observed with 40% Ge, due to inter-
face charge density. Gate leakage current densities (Jg) of
HfSiO2 dielectrics on SiGe channels were lower than SiO2

on Si channel devices by more than 3 × 102 times and com-
parable with optimized HfSiO2 dielectrics on Si channels.

Mobility enhancement was supported in the transcon-
ductance (Gm) results in Fig. 3. SiGe channels (Ge=25%)
without a Si cap (EOT=14.1) exhibited ∼60% Gm enhance-
ment over the Si channels (EOT=13.2). After applying the
Si cap process (deleted) on SiGe channel (EOT=13.4), Gm
was further enhanced by ∼40%. Therefore, a ∼100% en-
hancement was achieved by the combined SiGe channel and
Si cap processing.

For further hole mobility enhancement, we have in-
troduced a SiGe (110) surface orientation, varying chan-
nel direction, and uniaxial strain to boost the performance

of pMOS and nMOS simultaneously [11], [12]. Fig. 4
shows the available channel directions: 〈110〉, 〈100〉 for a
(100) surface; and 〈110〉, 〈111〉, 〈100〉 for a (110) surface.
It also shows MOSFETs with varying channel directions:
0◦(conventional), 45◦, 90◦, and 135◦.

For the pMOS on (100) surface (Fig. 5), the 〈100〉 di-
rection enhances Gm in Si (8%) and in SiGe (18%) as com-
pared to the 〈110〉 direction. This enhancement factor be-
comes more significant for SiGe pMOS on (110) surfaces
where the 〈110〉 direction enhances Gm 60% more than
〈100〉 direction.

Finally, we address low drive current issue of Ge-based
nMOSFET. The poor electron transport property is primar-
ily attributed to high interface trap density near the conduc-
tion band edge and high series S/D resistance. In this work,
we propose the intrinsically low density of state and high
conductivity effective masses [13]. Results are supported
by interface trap density (Dit) and specific contact resistiv-
ity (ρc). Figure 6. compares transconductance (Gm) of Si
and Ge channels. For Ge pMOSFETs, Id increases as Ge
% increases in the channel due to enhanced hole mobility
as previously reported. For Ge nMOSFETs, however, Id de-
creases dramatically as Ge % increases.

It is likely that most electrons populate the L valleys
for a (001) [110] Ge nMOSFET channel direction (Fig. 7).
Effective masses projected on the (100) plane are strongly
affected by L valleys in a way that is consistent with the
Schrodinger equation. Effective masses of electrons, which
populate L valleys are large for conductivity and small for
the density of states in conventional (100) [110] channel di-
rections, resulting in low electron mobility and carrier con-
centration in Ge-based nMOSFETs.

The large conductivity effective mass and low den-
sity of state effective mass of L valleys compromise carrier
mobility and carrier concentration and, therefore, degrades
transport characteristics of (001) [110] Ge nMOSFETs The
small electron population in Γ valleys with very small ef-
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Fig. 4 Channel directions and rotated (0◦ ∼135◦) MOSFETs; 〈110〉 and 〈100〉 for a (100) surface and
〈110〉, 〈111〉, and 〈100〉 for a (110) surface. 2D sub-band energy diagrams: (b) SiGe (100) and (c) SiGe
(110) surface.

Fig. 5 〈100〉 enhances pMOS Gm in both Si (8%) and SiGe (18%) than
〈110〉 on (100) surface. More significant gain (60%) is achieved for SiGe
pMOS on (110) 〈110〉.

fective mass 0.044 m0 that contributes to bulk Ge electron
mobility may accounts for the low inversion electron mobil-
ity of Ge nMOSFETs.

The relative performance of Si and Ge MOSFETs is
in good agreement with total on-resistance (Rtotal) vs. gate
length (Lg) results. For nMOSFETs, Rtotal of the Ge channel
is higher than the Si channel, resulting in low drain current
in Ge nMOSFETs. For pMOSFETs, Rtotal of the Ge channel
is lower than the Si channel and enhanced transport charac-
teristics were obtained.

4. Conclusions

Optimized Si caps reduced interface trap density and
showed minimal C-V hysteresis. Si cap processing effec-
tively suppressed the off-state current of SiGe pMOSFETs
by providing better gate control over the channel, while en-
hancing hole mobility by 40% in the SiGe channel, which

Fig. 6 ID-VG curves of Si and Ge CMOS. Enhanced drain current of Ge
pMOSFETs. Low drain current of Ge nMOSFETs.

Fig. 7 Schematic diagram of energy valleys and constant-energy ellip-
soids in (001) Ge conduction band, showing channel direction [110], [010],
and [100].

resulted in a ∼100% mobility enhancement over Si chan-
nels. Carrier mobility is enhanced on a SiGe (110) surface
orientation with additive gains in the 〈110〉 channel direc-
tion. Further mobility enhancement is achieved with uni-
axial strain, suggesting sustainable process-induced strain
technology as a SiGe (110) CMOS performance booster.
Large conductivity and small density of state effective
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masses of (001) [110] Ge sub-valleys cause low mobility
and carrier concentration, resulting in low on-state current
of Ge-based nMOSFETs.
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