
1804
IEICE TRANS. COMMUN., VOL.E98–B, NO.9 SEPTEMBER 2015

INVITED SURVEY PAPER
A Comprehensive Survey of Potential Game Approaches to
Wireless Networks

Koji YAMAMOTO†a), Senior Member

SUMMARY Potential games form a class of non-cooperative games
where the convergent of unilateral improvement dynamics is guaranteed in
many practical cases. The potential game approach has been applied to a
wide range of wireless network problems, particularly to a variety of chan-
nel assignment problems. In this paper, the properties of potential games
are introduced, and games in wireless networks that have been proven to be
potential games are comprehensively discussed.
key words: potential game, game theory, radio resource management,
channel assignment, transmission power control

1. Introduction

The broadcast nature of wireless transmissions causes co-
channel interference and channel contention, which can be
viewed as interactions among transceivers. Interactions
among multiple decision makers can be formulated and an-
alyzed using a branch of applied mathematics called game
theory [61], [131]. Game-theoretic approaches have been
applied to a wide range of wireless communication tech-
nologies, including transmission power control for code di-
vision multiple access (CDMA) cellular systems [153] and
cognitive radios [132]. For a summary of game-theoretic ap-
proaches to wireless networks, we refer the interested reader
to [68], [91], [92], [108], [168]. Application-specific sur-
veys of cognitive radios and sensor networks can be found
in [64], [102], [160], [166], [178], [189].

In this paper, we focus on potential games [126], which
form a class of strategic form games with the following de-
sirable properties:

• The existence of a Nash equilibrium in potential games
is guaranteed in many practical situations [126] (The-
orems 1 and 2 in this paper), but is not guaranteed
for general strategic form games. Other classes of
games possessing Nash equilibria are summarized in
[92, §2.2] and [68, §3.4].
• Unilateral improvement dynamics in potential games

with finite strategy sets is guaranteed to converge to
the Nash equilibrium in a finite number of steps, i.e.,
they do not cycle [126] (Theorem 4 in this paper). As
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Table 1 Games discussed in this paper.

Section System model Strategy Payo�

5 Fig. 1(b) Channel Interference power
6 Fig. 1(b) Channel SINR or Shannon capacity
7 Fig. 1(b) Channel Number of interference signals
8 Figs. 1(c) and 1(d) Channel Interference power
9 Figs. 1(c) and 1(d) Channel SINR or Shannon capacity
10 Fig. 1(e) Channel Number of interference signals
11 Fig. 1(e) Channel Successful access probability or throughput
12 Fig. 1(e) Transmission probability Successful access probability or throughput
13 Fig. 1(a) Transmission power Throughput or Shannon capacity
14 Fig. 1(c) Transmission power Connectivity
15 Fluid network Amount of tra� c Congestion cost
16 M/M/1 queue Arrival rate Trade-o� between throughput and delay
17 Mobile sensors Location Connectivity or coverage
18 Immobile sensors Channel Coverage

Fig. 1 System models. Straight blue lines represent communication channels of player i and red
dashed lines represent interference channels to player i.

corresponds to TXs or clusters, and i interferes with j if
ji ∈ E, as shown in Fig. 1(e), i.e., E � { ji | G jiP > T }
where P is the transmission power level for every TX and T
is a threshold of the received power. Note that in undirected
graph (I,E), ji ∈ E ⇔ i j ∈ E, for every {i, j} ⊂ I. We
denote the neighborhood of i in graph (I,E) by Ii � { j ∈
I \ {i} | ji ∈ E }. We also define Ici

i (c) � { j ∈ Ii | c j = ci },
then, |Ici

i (c)| =
∑

j∈Ii � c j=ci =
∑

j� i � c j=ci � i j∈E.

2. Game-Theoretic Framework

We begin with the definition of a strategic form game and
present an example of a game-theoretic formulation of a
simple channel selection problem. Moreover, we discuss
other useful concepts, such as the best response and Nash
equilibrium. The analysis of Nash equilibria in the channel
selection example reveals the potential presence of cycles in
best-response adjustments.

Definition 1: A strategic (or normal) form game is a triplet
G � (I, (Ai)i∈I, (ui)i∈I), or simply G � (I, (Ai), (ui)),
where I = {1, 2, . . . ,|I|} is a finite set of players (decision
makers)†, Ai is the set of strategies (or actions) for player

†Infinite player (or non-atomic) potential games introduced in
[150], [151] are beyond the scope of this paper. Infinite player
potential games have been applied to BS selection games [158],
[170].

i ∈ I, and ui :
∏

i∈I Ai → R is the payoff (or utility) func-
tion of player i ∈ I that must be maximized.

If S ⊆ I, we denote the Cartesian product
∏

i∈S Ai

by AS. If S = I, we simply write A to denote AI,
and

∑
i to denote

∑
i∈I. When S = I \ {i}, we let A−i

denote AI\{i}, and
∑

j� i denote
∑

j∈I\{i}. For ai ∈ Ai,
aS = (ai)i∈S ∈ AS, a = (ai, a−i) = (a1, . . . ,a|I|) ∈ A, and
a−i = (a1, . . . ,ai−1,ai+1, . . . ,a|I|) ∈ A−i.

Example 1: Consider a channel selection problem in the
TX-RX pair model shown in Fig. 1(b). Each TX-RX pair is
assumed to select its channel in a decentralized manner in
order to minimize the received interference power.

The channel selection problem can be formulated as a
strategic form game G1 � (I, (Ci), (u1i)). The elements
of the game are as follows: the set of players I is the set
of TX-RX pairs. The strategy set for each pair i, Ci is the
set of available channels. The received interference power
at RX i ∈ I is determined by a combination of channels
c = (ci)i∈I ∈ C =

∏
i Ci, where

Ii(c) �
∑
j� i

Gi jP � c j=ci . (1)

Let −Ii(c) be the payo� function to be maximized, i.e.,

u1i(c) � −Ii(c) = −
∑
j� i

Gi jP � c j=ci . (2)
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Table 2 Notation.

G Strategic form game
I Finite set of players, I = {1, 2, . . . ,|I|}
I f (a) � { i ∈ I | f ∈ ai }
Ai Set of strategies for player i ∈ I
A Strategy space,

∏
i∈I Ai

ui Payo� function for player i ∈ I
� Potential function

BRi Best-response correspondence of player i
ai Strategy of player i, ai ∈ Ai

� (Ai) Set of probability distributions overAi

xi Mixed strategy, xi ∈ � (Ai)
x Mixed strategy profile, x ∈

∏
i � (Ai)

Gi Link gain between TX i and a single isolated RX in
Fig. 1(a)

Gi j Link gain between TX j and RX i; G ji � Gi j in Fig. 1(b),
and G ji = Gi j in Figs. 1(c) and 1(d)

ji Directed link from i to j
E Set of edges in undirected graph
Ii � { j ∈ I \ {i} | ji ∈ E }. Neighborhood in graph (I,E)
Ici

i (c) � { j ∈ Ii | c j = ci }.

N Common noise power for every player
Ni Noise power at RX i

Ni(ci) Noise power at RX i in channel ci

Ii(c) Interference power at RX i at channel arrangement c
Ci Set of available channels for player i

ci (∈ Ci) Channel of player i
c � (ci)i∈I ∈

∏
i Ci

Pi Set of available transmission power levels for player i
pi (∈ Pi) Transmission power level of player i as a strategy

p � (pi)i∈I ∈
∏

i Pi

P Identical transmission power level for every player
Pi Transmission power level for player i as a constant
� Required signal-to-interference-plus-noise power ratio

(SINR)

Note thatG1 was introduced in [140], and we further discuss
it in Example 2.

Definition 2: The best-response correspondence† (or sim-
ply, best response) BRi : A−i → 2Ai of player i to strategy
profile a−i is the correspondence

BRi(a−i)

� { ai ∈ Ai | ui(ai, a−i) ≥ ui(a
′
i , a−i),∀a′i ∈ Ai }, (3)

or equivalently, BRi(a−i) � arg maxai∈Ai ui(ai, a−i).

A fundamental solution concept for strategic form
games is the Nash equilibrium:

Definition 3: A strategy profile a∗ = (a∗i , a∗−i) ∈ A is a
pure-strategy Nash equilibrium (or simply a Nash equilib-
rium) of game (I, (Ai), (ui)) if

ui(a
∗
i , a∗−i) ≥ ui(ai, a∗−i), (4)

for every i ∈ I and ai ∈ Ai; equivalently, a∗i ∈ BRi(a∗−i)
for every i ∈ I. That is, a∗i is a solution to the optimization
problem maxai∈Ai ui(ai, a∗−i).

†A correspondence is a set-valued function for which all image
sets are non-empty, e.g, [92], [131].

Fig. 2 Arrangement used in Example 2. A cycle results from the best-
response adjustment.

At the Nash equilibrium, no player can improve his/her
payo� by adopting a di� erent strategy unilaterally; thus, no
player has an incentive to unilaterally deviate from the equi-
librium. The Nash equilibrium is a proper solution concept;
however, the existence of a pure-strategy Nash equilibrium
is not necessarily guaranteed, as shown in the next example.

Example 2: Consider G1 and the arrangement shown in
Fig. 2, i.e., I = {1, 2, 3}, Ci = {1, 2} for every i, and G13 >
G12, G21 > G23, and G32 > G31

††. The game does not have a
Nash equilibrium, i.e., for every channel allocation, at least
one pair has an incentive to change his/her channel. The de-
tails are as follows: when all players choose the same chan-
nel, e.g., (c1, c2, c3) = (1, 1, 1), every player has an incentive
to change his/her channel because BRi(c−i) = {2} for all i;
thus, it is not in Nash equilibrium. On the contrary, when
two players choose the same channel, and the third player
chooses a di� erent channel, e.g., (c1, c2, c3) = (1, 1, 2), as
shown in Fig. 2(a), BR2(c−2) = {2}, i.e., pair 2 has an incen-
tive to change its channel a2 from 1 to 2, and (4) does not
hold. Because of the symmetry property of the arrangement
in Fig. 2, every strategy profile does not satisfy (4). Fur-
thermore, the best-response channel adjustments, which will
be formally discussed in Sect. 4, cycle as (1, 1, 2), (1, 2, 2),
(1, 2, 1), (2, 2, 1), (2, 1, 1), (2, 1, 2), and (1, 1, 2), as shown in
Figs. 2(a-f).

The channel allocation game G1 is discussed further in
Sect. 5.

3. Potential Games

We state key definitions and properties of potential games
in Sect. 3.1, show how to identify and design exact poten-
tial games in Sects. 3.2 and 3.3, and show how to identify
ordinal potential games in Sect. 3.4.

††This setting is essentially the same as that used in [63], [121],
[134, Example 4.17], [137].
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3.1 Definitions and Properties of Potential Games

Monderer and Shapley [126] introduced the following
classes of potential games†:

Definition 4: A strategic form game (I, (Ai), (ui)) is an ex-
act potential game (EPG) if there exists an exact potential
function � : A → R such that

ui(ai, a−i) − ui(a
′
i , a−i) = � (ai, a−i) − � (a′i , a−i), (5)

for every i ∈ I, ai,a′i ∈ Ai, and a−i ∈ A−i.

Definition 5: A strategic form game (I, (Ai), (ui)) is a
weighted potential game (WPG) if there exist a weighted
potential function � : A → R and a set of positive numbers
{� i}i∈I such that

ui(ai, a−i) − ui(a
′
i , a−i) = � i(� (ai, a−i) − � (a′i , a−i)), (6)

for every i ∈ I, ai,a′i ∈ Ai, and a−i ∈ A−i.

Definition 6: A strategic form game (I, (Ai), (ui)) is an or-
dinal potential game (OPG) if there exists an ordinal poten-
tial function � : A → R such that

sgn(ui(ai, a−i) − ui(a
′
i , a−i))

= sgn(� (ai, a−i) − � (a′i , a−i)), (7)

for every i ∈ I, ai,a′i ∈ Ai, and a−i ∈ A−i, where sgn(·)
denotes the sign function.

Although the potential function � is independent of the
indices of the players, � reflects any unilateral change in any
payo� function ui for every player i.

Since an EPG is a WPG and a WPG is an OPG
[126], [177], the following properties of OPGs are satisfied
by EPGs and WPGs.

Theorem 1 (Existence in finite OPGs): Every OPG with
finite strategy sets possesses at least one Nash equilibrium
[126, Corollary 2.2].

Theorem 2 (Existence in infinite OPGs): In the case of in-
finite strategy sets, every OPG with compact strategy sets
and continuous payo� functions possesses at least one Nash
equilibrium [126, Lemma 4.3].

Theorem 3 (Uniqueness): Every OPG with a compact and
convex strategy space, and a strictly concave and contin-
uously di� erentiable potential function possesses a unique
Nash equilibrium [138, Theorem 2], [154].

The most important property of potential games is
acyclicity, which is also referred to as the finite improve-
ment property.

†There are a variety of generalized concepts of potential
games, e.g., generalized ordinal potential games [126], best-
response potential games [177], pseudo-potential games [56], near-
potential games [30], [31], and state-based potential games [117].
Applications of these games are beyond the scope of this paper.

Definition 7 (Finite improvement property [126]): A path
in (I, (Ai), (ui)) is a sequence (a[0], a[1], . . .) such that for
every integer k ≥ 1, there exists a unique player i such
that ai[k] � ai[k − 1] ∈ Ai while a−i[k] = a−i[k − 1].
(a[0], a[1], . . .) is an improvement path if, for every k ≥ 1,
ui(a[k]) > ui(a[k−1]), where i is the unique deviator at step
k. (I, (Ai), (ui)) has the finite improvement property (FIP) if
every improvement path is finite.

Theorem 4: Every OPG with finite strategy sets has the
FIP [126, Lemma 2.3]; that is, unilateral improvement dy-
namics is guaranteed to converge to a Nash equilibrium in a
finite number of steps.

3.2 Identification of Exact Potential Games

The definition of an EPG utilizes a potential function (5).
Sometimes, however, it is beneficial to know if a given game
is an EPG independently of its potential function. The fol-
lowing properties of EPGs and classes of games known to
be EPGs are useful for the identification and derivation of
potential functions. Note that each EPG has a unique ex-
act potential function except for an additive constant [126,
Lemma 2.7].

Theorem 5: Let (I, (Ai), (ui)) be a strategic form game
where strategy setsAi are intervals of real numbers and pay-
o� functions ui are twice continuously di� erentiable. Then,
the game is an EPG if and only if

� 2ui(a)
� ai � a j

=
� 2u j(a)

� ai � a j
, (8)

for every i, j ∈ I [126, Theorem 4.5].

Theorem 6: Let (I, (Ai), (ui,1)) and (I, (Ai), (ui,2)) be
EPGs with potential functions � 1(a) and � 2(a), respectively.
Furthermore, let �, � ∈ R. Then, (I, (Ai), (� ui,1 + � ui,2)) is
an EPG with potential function �� 1(a) + �� 2(a) [59].

3.2.1 Coordination-Dummy Games

If ui(a) = u(a) for all i ∈ I, where u : A → R, the game
(I, (Ai), (u)) is called a coordination game†† or an identical
interest game, and u is called a coordination function [59].

If ui(a) = di(a−i) for all i ∈ I, where di : A−i → R, the
game (I, (Ai), (di)) is called a dummy game, and di is called
a dummy function [59].

If ui(a) = si(ai) for all i ∈ I, where si : Ai → R, the
game (I, (Ai), (si)) is called a self-motivated game, and si is
called a self-motivated function [133].

Theorem 7: (I, (Ai), (ui)) is an EPG if and only if there
exist functions u : A → R and di : A−i → R such that

ui(ai, a−i) = u(ai, a−i) + di(a−i), (9)
††The term “coordination game” is also used to describe games

where players receive benefits when they choose the same strategy
[47].
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for every i ∈ I [59], [163]. This game is said to be a
coordination-dummy game. The potential function of this
game is � (a) = u(a).

Example 3: From Theorem 7, any identical interest game
is an EPG. Almost all games found in studies applying iden-
tical interest games [19], [27], [55], [74], [107], [142], [165]
have the form of game G2 � (I, (Ai), (u2i)), where

u2i(a) �
∑

j

f j(a), (10)

for every i ∈ I and f j(a) is a performance indicator of player
j, e.g., f j(a) is the individual throughput and u2i(a) is the ag-
gregated throughput of all players [165]. Note that in most
of these works, G2 is used for comparison with other games.

Example 4: Closely related to G2, the form of game G3
with payo�

u3i(a) � fi(ai, aIi ) +
∑
j∈Ii

f j(a j, aI j ), (11)

where fi : Ai × AIi → R, is found in many scenarios:
data stream control in multiple-input and multiple-output
(MIMO) [14], channel assignment [187], joint power, chan-
nel and BS assignment [162], joint power and user schedul-
ing [207], BS selection [53], and BS sleeping [210]. Note
that G3 is not an identical interest game, but can be seen as
G2 on graphs, where the performance indicator of player i is
a function of strategies of its neighbors, i.e., fi : Ai×AIi →
R, and the sum of the performance indicators of player i and
neighbors Ii is set for the payo� function of player i. It can
be easily proved that G3 is an EPG with potential

� 3(a) =
∑

i

fi(ai, aIi ). (12)

3.2.2 Bilateral Symmetric Interaction Games

A strategic form game G4 � (I, (Ai), (u4i)) is called a bi-
lateral symmetric interaction (BSI) game if there exist func-
tions wi j : Ai ×A j → R and si : Ai → R such that

u4i(a) =
∑
j� i

wi j(ai,a j) − si(ai), (13)

where wi j(ai,a j) = wji(a j,ai) for every (ai,a j) ∈ Ai × A j

[174].

Theorem 8 ([174]): A BSI game G4 is an EPG with poten-
tial function†

� 4(a) =
1
2

∑
i

∑
j� i

wi j(ai,a j) −
∑

i

si(ai)

=
∑
i< j

wi j(ai,a j) −
∑

i

si(ai). (14)

Example 5: Consider a quasi-Cournot game G5 �
†∑

i< j =
∑
{i, j}⊆I =

∑|I|
i=1

∑|I|
j=i+1.

(I, (Ai), (u5i)) with a linear inverse demand function, where
each player i ∈ I produces a homogeneous product and de-
termines the output. Let Ai = R++ be a set of possible out-
puts. The payo� function of player i is defined by

u5i(a) �
(
� − �

∑
j a j

)
ai − costi(ai), (15)

where �, � > 0 and costi : Ai → R is a di� erentiable cost
function. Since

u5i(a) = � ai − � ai
2 − costi(ai)︸���������������������︷︷���������������������︸

self-motivated function

− �
∑

j� i a j ai︸�������︷︷�������︸
BSI

, (16)

G5 is an EPG with potential

� 5(a) = �
∑

i ai − �
∑

i ai
2 −

∑
i ci(ai) − �

∑
i< j ai a j

(17)

[163]. Further discussion can be found in [126], [174].

3.2.3 Interaction Potential

Theorem 9 ([174]): A normal form game G6 � (I,
(Ai), (u6i)) is an EPG if and only if there exists a function
{ � S | � S : AS → R,S ⊆ I } (called an interaction poten-
tial) such that

u6i(a) =
∑
S⊆I:i∈S

� S(aS), (18)

for every a ∈ A and i ∈ I. The potential function is

� 6(a) =
∑
S⊆I

� S(aS). (19)

3.2.4 Congestion Games

In congestion games (CGs), the payo� for using a resource
(e.g., a channel or a facility) is a function of the number of
players using the same resource. More precisely, CGs are
defined as follows:

In the congestion model proposed by Rosenthal [149],
each player i uses a subset ai of common resources F , and
receives resource-specific payo� wf (|I f (a)|) from resource
f ∈ ai according to the number of players using resource
f . Here, wf : {1, . . . ,|I|} → R, I f (a) � { i ∈ I | f ∈
ai } represents the set of players that use resource f . Then,
|I f (a)| =

∑
i � f∈ai .

A strategic form game G7 � (I, (Ai), (u7i)) associated
with a congestion model, whereAi ⊆ 2F and

u7i(a) �
∑
f∈ai

wf (|I f (a)|), (20)

is called a CG. Note that Ai is a collection of subsets of F
and is not a set. Moreover, ai ∈ Ai is a set, not a scalar
quantity. Note that a CG where the strategy of every player
is a singleton, i.e., Ai ⊆ F and u7i(a) = wai (|Iai (a)|) is
called a singleton CG.
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Theorem 10: A CG G7 is an EPG with potential function

� 7(a) =
∑

f∈∪iai

⎛⎜⎜⎜⎜⎜⎜⎜⎝
|I f (a)|∑

k=1

wf (k)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (21)

[126, Theorem 3.1], [149]. Furthermore, every EPG with
finite strategy sets has an equivalent CG [126, Theorem 3.2].

Note that generalized CGs do not necessarily possess
potential functions. For generalized CGs with potential, we
refer the interested reader to [1], [120]. It was proved that
CGs with player-specific payo� functions [125], and those
with resource-specific payo� functions and player-specific
constants [120], have potential. CGs with linear payo�
function on undirected/directed graphs has been discussed
in [20].

3.3 Design of Payo� Functions

In some scenarios, we can design payo� functions and as-
sign them to players to ensure that the game is an EPG. Such
approach is often applied in the context of cooperative con-
trol [114]. These design methodologies can be used when
we want to derive payo� functions from a given global ob-
jective so that the game with the designed payo� functions
is an EPG with the global objective as the potential function.
If the global objective is in the form of (19), we can derive
payo� functions by using (18).

Otherwise, we can utilize many design rules: the
equally shared rule, marginal contribution, and the Shapley
values [159], [174]. Since Marden and Wierman [118] have
already summarized these rules, we only present marginal
contribution here.

Marginal contribution, or the wonderful life utility
(WLU) [182], is the following payo� function derived from
the potential function:

ui(a) = � (a) − � (a−i), (22)

where � (a−i) is the value of the potential function in the ab-
sence of player i. The game with the WLU is an EPG with
potential function � [118].

When the potential function for each player is repre-
sented as the sum of functions fi : A → R, i.e., � (a) =∑

j f j(a) and � (a−i) =
∑

j� i f j(a−i), the WLU (22) can be
written as

ui(a) =
∑

j f j(a) −
∑

j� i f j(a−i)

= fi(a) −
∑

j� i( f j(a−i) − f j(a)), (23)

where f j(a−i)− f j(a) represents the loss to player j resulting
from player i’s participation.

Example 6 (Consensus game): In the consensus problem
[173], each player i adjusts ai and tries to reach a1 = a2 =
· · · = a|I|.

Marden et al. [114] considered the global objective

� 8(a) � −1
2

∑
i

∑
j∈Ii

‖ai − a j‖, (24)

and proposed using the WLU

u8i(a) � −
∑
j∈Ii

‖ai − a j‖ =
∑
j� i

‖ai − a j‖ � i j∈E . (25)

Since game G8 � (I, (Ai), (u8i)) is a BSI game with
wi j(ai,a j) = −‖ai − a j‖ � i j∈E, G8 is confirmed to be an EPG.

3.4 Identification of Ordinal Potential Games

In contrast to EPGs, OPGs have many ordinal potential
functions [126].

Theorem 11: Consider the game (I, (Ai), (ui)). If there
exists a strictly increasing transformation fi : R → R for
every i ∈ I such that game (I, (Ai), ( fi(ui))) is an OPG, the
original game (I, (Ai), (ui)) is an OPG with the same poten-
tial function [133].

4. Learning Algorithms

A variety of learning algorithms are available to facilitate the
convergence of potential games to Nash equilibrium, e.g.,
myopic best response, fictitious play, reinforcement learn-
ing, and spatial adaptive play. Unfortunately, there is no
general dynamics that is guaranteed to converge to a Nash
equilibrium for a wide class of games [71]. Since Lasaulce
et al. [92, Sections 5 and 6] comprehensively summarized
these learning algorithms and their su� cient conditions for
convergence for various classes of games (including poten-
tial games), we present only two frequently used algorithms.

Definition 8: Best-response dynamics refers to the follow-
ing update rule: At each step k, player i ∈ I unilaterally
changes his/her strategy from ai[k] to his/her best response
a−i[k]; in particular,

ai[k + 1] ∈ BRi(a−i[k]). (26)

The other players choose the same strategy, i.e., a−i[k + 1] =
a−i[k].

Note that while the term “best-response dynamics” was
introduced by Matsui [119], it has many representations
depending on the type of game. We also note that best-
response dynamics may converge to sub-optimal Nash equi-
libria. By contrast, the following spatial adaptive play can
converge to the optimal Nash equilibrium. To be precise, it
maximizes the potential function with arbitrarily high prob-
ability.

Definition 9: Consider a game with a finite number of
strategy sets. Log-linear learning [22], spatial adaptive play
[198], and logit-response dynamics [5] refer to the follow-
ing update rule: At each step k, a player i ∈ I unilater-
ally changes his/her strategy from ai[k] to ai with probability
xi ∈ � (Ai) according to the Boltzmann-Gibbs distribution

xi(ai | a−i[k]) =
exp[� ui(ai, a−i[k])]∑

a′i∈Ai
exp [� ui(a′i , a−i[k])]

, (27)
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where � (0 < � < ∞) is related to the (inverse) temper-
ature in an analogy to statistical physics. Note that in the
limit � → ∞, the spatial adaptive play approaches the best-
response dynamics.

Note that (27) is the solution to the following approxi-
mated maximization problem:

max
ai∈Ai

ui(ai, a−i) = max
xi(ai)

∑
ai∈Ai

xi(ai) ui(ai, a−i)

≈ max
xi(ai)

⎡⎢⎢⎢⎢⎢⎢⎣
∑

ai∈Ai

xi(ai) ui(ai, a−i) −
1
�

∑
ai∈Ai

xi(ai) log xi(ai)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(28)

which is called a perturbed payo� , where
∑

ai∈Ai
xi(ai)

log xi(ai) is the entropy function. The derivation of (27)
from (28) can be found in [37].

Theorem 12 ([22], [198]): In the finite EPG (I, (Ai), (ui))
with potential function � , the spatial adaptive play has the
unique stationary distribution of strategy profile x ∈ � (A),
where

x(a) =
exp [�� (a)]∑

a∈A exp [�� (a)]
, (29)

i.e., it is also the Boltzmann-Gibbs distribution.

Further discussion can be found in [15], [116].

5. Channel Assignment to Manage Received and Gen-
erated Interference Power in TX-RX Pair Model

In the TX-RX pair model shown in Fig. 1(b), Nie and Co-
maniciu [140] pointed out that the channel selection game
G1 introduced in Sect. 2 was not an EPG. Note that the pay-
o� function of G1 is the negated sum of received interfer-
ence from neighboring TXs. To ensure that the channel se-
lection game is an EPG, they considered the channel selec-
tion game G9, whose payo� function was the negated sum
of the received interference from neighboring TXs, and gen-
erated interference to neighboring RXs, i.e.,

u9i(c) � −
∑
j� i

(Gi jP j + G jiPi) � c j=ci . (30)

Since G9 is a BSI game with wi j(ci, c j) = −(Gi jP j +
G jiPi) � c j=ci , it is an EPG with potential

� 9(c) = −
∑

i

Ii(c) = −
∑

i

∑
j� i

Gi jP j � c j=ci , (31)

which corresponds to the negated sum of received interfer-
ence in the entire network. Note that in order to evaluate
(30), each pair i needs to estimate or share the values of the
generated interference to neighboring RXs, G jiPi � c j=ci .

Concurrently with the above, Kau� mann et al. [82] dis-
cussed the following potential function � 10(c), which in-
cludes RX-specific noise power Ni(ci), and derived a payo�
function using Theorem 9,

� 10(c) � −
∑

i

∑
j� i

Gi jP j � c j=ci −
∑

i

Ni(ci), (32)

u10i(c) = −
∑
j� i

(Gi jP j + G jiPi) � c j=ci −Ni(ci). (33)

To enable multi-channel allocation, e.g., orthogonal
frequency-division multiple access (OFDMA) subcarrier al-
location or resource block allocation, La et al. [88] discussed
a modification of G9 suitable for multi-channel allocation.

In contrast to unidirectional links assumed in the TX-
RX pair model, Uykan and Jäntti [175], [176] discussed a
channel assignment problem for bidirectional links and pro-
posed a joint transmission order and channel assignment al-
gorithm.

5.1 Joint Transmission Power and Channel Allocation

Nie et al. [141] showed that the joint channel selection and
power control game with payo� function

u11i(p, c) � −
∑
j� i

(Gi j p j + G ji pi) � ci=c j (34)

is an EPG. Because the best response in G11 results in the
minimum transmission power level, Bloem et al. [21] pro-
posed adding terms � log(1+ Gii pi)+ �/ pi to (34) to account
for the achievable data rate and consumed power. Note that
these terms are self-motivated functions, and the game with
the modified payo� function is still an EPG.

As another type of joint assignment, a preliminary
beamform pattern setting followed by channel allocation
was discussed in [202].

5.2 Primary-Secondary Scenario and Heterogeneous Net-
works

To manage interference in primary-secondary systems,
Bloem et al. [21] proposed adding terms related to the re-
ceived and generated interferences from and to the primary
user. They also proposed adding cost terms related to pay-
o� function (34). In particular, they discussed a Stackelberg
game [131], where the primary user was the leader and the
secondary users were followers. Giupponi and Ibars dis-
cussed overlay cognitive networks [66] and heterogeneous
OFDMA networks [67]. Mustika et al. [129] took a similar
approach to prioritize users.

Uplinks of heterogeneous OFDMA cellular systems
with femtocells were discussed in [130], whereas down-
links of OFDMA cellular systems, where each BS trans-
mits to several mobile stations, were discussed in [89], [90].
OFDMA relay networks were considered in [96]. Further
discussion can be found in [76]. Joint BS/AP selection and
channel selection problems were discussed in [48].

6. Channel Assignment to Enhance SINR and Through-
put in TX-RX Pair Model

In the TX-RX pair model shown in Fig. 1(b), the signal-to-
interference-plus-noise ratio (SINR) at RX i is given by
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GiiPi

Ni + Ii(c)
=

GiiPi

Ni +
∑

j� i Gi jP j � c j=ci

� SINRi(c). (35)

Menon et al. [123] pointed out that there may be no Nash
equilibrium in the channel selection game (I, (Ci), (SINRi)).

Instead, they proposed using the sum of the inverse
SINR, defined by

u12i(c) � − 1
SINRi(c)

−
∑
j� i

G jiPi

G j jP j
� c j=ci , (36)

as the payo� function. Similar to G9, G12 �
(I, (Ci), (u12i)) is a BSI game with wi j(ci, c j) =
−[(Gi jP j/GiiPi) + (G jiPi/G j jP j)] � c j=ci . Thus, G12 is an
EPG with potential

� 12(c) = −
∑

i

1
SINRi(c)

, (37)

i.e., the sum of the inverse SINR in the network.
Note that the above expression is a single carrier ver-

sion of orthogonal channel selection. Menon et al. [123]
discussed a waveform adaptation version of G12 that can
be applied to codeword selection in non-orthogonal code di-
vision multiple access (CDMA), and Buzzi et al. [24] fur-
ther discussed waveform adaptation. Buzzi et al. [23] also
discussed an OFDMA subcarrier allocation version of G12.
Cai et al. [25] discussed joint transmission power and chan-
nel assignment utilizing the payo� function (36) of G12.

Gállego et al. [63] proposed using the network through-
put of joint power and channel assignment,∑

i

� SINRi(p,c)≥� Bci log (1 + SINRi(p, c)) , (38)

as potential, where Bci is the bandwidth of channel ci, and
� is the required SINR. It may have been di� cult to derive
a simple payo� function, and they thus proposed the WLU
(23) of (38).

7. Channel Assignment to Manage the Number of In-
terference Signals in TX-RX Pair Model

Yu et al. [199] and Chen et al. [36] considered sensor net-
works where each RX (sink) receives messages from multi-
ple TXs (sensors). They proved that a channel selection that
minimizes the number of received and generated interfer-
ence signals is an EPG, where the potential is the number
of total interference signals. Note that the average num-
ber of retries is approximately proportional to the number
of received interference signals when the probability that
the messages are transmitted is very small, as in sensor net-
works.

A simpler and related form of (30) is detailed in the
following discussion. To reduce the information exchange
required to evaluate (30), Yamamoto et al. [195] proposed
using the number of received and generated interference
sources as the payo� function, where the received interfer-
ence power is greater than a given threshold T , i.e.,

u13i(c) � −
∑
j� i

(
� Gi jP j>T +

� G jiPi>T

)
� c j=ci . (39)

This model is sometimes referred to as a “binary” interfer-
ence model [110] in comparison with a “physical” inter-
ference model. Because G13 � (I, (Ci), (u13i)) is a BSI
game with wi j(ci, c j) = −(

� Gi jP j>T +
� G jiPi>T )

� c j=ci , G13 is
an EPG. When we consider a directed graph, where edges
between TX j and RX i indicate Gi jP j > T , we denote TX
i’s neighboring RXs by Ri � { j ∈ I | j � i and ji ∈ E }, and
RX i’s neighboring TXs by Ti � { j ∈ I | j � i and i j ∈ E }.
Using these expressions, (39) can be rewritten to

u13i(c) = −
∑
j� i

(
� i j∈E +

� ji∈E
)

� c j=ci

= −
∑
j∈Ti

� c j=ci −
∑
j∈Ri

� c j=ci . (40)

Yang et al. [196] discussed a multi-channel version of G13.

8. Channel Assignment to Manage Received Interfer-
ence Power in TX Network Model

8.1 Identical Transmission Power Levels

In Sect. 5, channel allocation games in the TX-RX pair
model shown in Fig. 1(b) are discussed. Neel et al. [135],
[136] considered a di� erent channel allocation game typi-
cally applied to channel allocation for APs in the wireless lo-
cal area networks (WLANs) shown in Fig. 1(c), where each
TX i ∈ I selects a channel ci ∈ Ci to minimize the interfer-
ence from other TXs, i.e.,

u14i(c) � −Ii(c) � −
∑
j� i

Gi jP � ci=c j , (41)

where P is the common transmission power level for every
TX. Note that Gi j = G ji in this scenario, whereas Gi j �
G ji in the TX-RX pair model shown in Fig. 1(b). Moreover,
note that interference from stations other than the TXs is not
taken into account in the payo� function. In addition to the
TX network model, channel selection can be applied to the
canonical network model shown in Fig. 1(d) [15].

Because G14 is a BSI game where wi j(ci, c j) =
−Gi jP � ci=c j , it is an EPG with potential

� 14(c) = −1
2

∑
i

Ii(c), (42)

which corresponds to the aggregated interference power
among TXs. Neel et al. pointed out that other symmetric
interference functions, e.g., max{B − |ci − c j|, 0}/ B, where
B is the common bandwidth for every channel, can be used
instead of

� ci=c j in (41).
Kau� mann et al. [82] discussed essentially the same

problem. However, they considered player-specific noise,
and derived (41) by substituting Gi j = G ji and Pi = Pj = P
into (33).

Compared with the payo� function (30), (41) can be
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evaluated with only local information available at each TX;
however, the transmission power levels of all TXs need to be
identical. We further discuss this requirement in Sect. 8.2.

Liu and Wu [105] reformulated the game represented
by (41) as a CG by introducing virtual resources. Further
discussion can be found in [93].

8.2 Non-Identical Transmission Power Levels

To avoid the requirement of identical transmission power
levels in (41), Neel [137] proposed using the product of
(constant) transmission power level Pi and interference Ii(c)
as the payo� function, i.e.,

u15i(c) � −PiIi(c) = −Pi

∑
j� i

Gi jP j � c j=ci . (43)

Because G15 is a BSI game with wi j = −PiGi jP j � c j=ci , G15
is an EPG with

� 15(c) = −1
2

∑
i

Pi

∑
j� i

Gi jP j � c j=ci . (44)

Note that this form of payo� functions was provided by
Menon et al. [122] in the context of waveform adapta-
tions. This game under frequency-selective channels was
discussed by Wu et al. [184].

The relationship between (43) and its exact potential
function (44) implies that the game G16 with payo� func-
tion

u16i(c) � −Ii(c) = −
∑
j� i

Gi jP j � c j=ci (45)

is a WPG with potential function � 15(c) and � i = 1/ Pi in
(6), i.e., the identical transmission power level required in
(41) is not necessarily required for the game to have the FIP.
This was made clear by Bahramian et al. [16] and Babadi et
al. [15].

As extensions, in [179], the interference management
game G17 on graph structures with the following payo�
function was discussed:

u17i(c) � −Pi

∑
i∈Ii

Gi jP j � c j=ci

= −Pi

∑
i

Gi jP j � c j=ci � ji∈E . (46)

[185], [206] proposed using the expected value of interfer-
ence in order to manage fluctuating interference. Zheng
[209] treated dynamical on-o� according to tra� c variations
in G16.

9. Channel Assignment to Enhance SINR and Capac-
ity in TX Network Model

Menon et al. [122] showed that a waveform adaptation game
where the payo� function is the SINR or the mean-squared
error at the RX is an OPG. Chen and Huang [39] showed that

a channel allocation game in the TX network model shown
in Fig. 1(c), or in the canonical network model shown in
Fig. 1(d), where the payo� function is the SINR or a Shan-
non capacity, is an OPG. Here, we provide a derivation in
the form of channel allocation according to the derivation
provided in [122]. A channel selection game G18 with pay-
o� function

u18i(c) � −Pi[Ni(ci) + Ii(c)] (47)

is an EPG with potential

� 18(c) = −
∑

i

PiNi(ci) −
1
2

∑
i

PiIi(c). (48)

Because Pi is a constant in (47), by Theorem 11, G19 with
payo�

u19i(c) �
−GiiPi

2

u18i(c)
=

GiiPi

Ni(ci) + Ii(c)
(49)

is an OPG with potential � 18(c). As a result, once again
using Theorem 11, G20 with payo�

u20i(c) � B log (1 + u19i(c))

= B log

(
1 +

GiiPi

Ni(ci) + Ii(c)

)
(50)

is an OPG with potential � 18(c). Xu et al. [193] further
discuss G20, where the active TX set can be stochastically
changed.

A quite relevant discussion was conducted by Song et
al. [165]. They discussed a joint transmission power and
channel assignment game G21 to maximize throughput:

u21i(p, c) � R

(
1 +

Gii pi

Ni(ci) + Ii(p, c)

)
, (51)

where R : R → R represents throughput depending on
SINR. They pointed out that since each user would set the
maximum transmission power at a Nash equilibrium, G21 is
equivalent to the channel selection game G14. Further dis-
cussion on joint transmission power and channel assignment
can be found in [109].

10. Channel Assignment to Manage the Number of In-
terference Signals in Interference Graph

For the interference graph (I,E) shown in Fig. 1(e), Xu et
al. [187] proposed using the number of neighbors that select
the same channel as the payo� function, i.e.,

u22i(c) � −
∑
j∈Ii

� c j=ci . (52)

We would like to point out that (52) can be reformulated to

u22i(c) = −
∑
j� i

� c j=ci � i j∈E, (53)
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i.e., G22 is a BSI game with wi j(ci, c j) = −
� c j=ci � i j∈E. Thus

G22 is an EPG. Note that this is a special case of singleton
CGs on graphs discussed in Sect. 11.1.

As variations of G22, Xu et al. [190] discussed the im-
pact of partially overlapped channels. Yuan et al. [200] dis-
cussed the variable-bandwidth channel allocation problem.
Zheng et al. [208] took into account stochastic channel ac-
cess according to the carrier sense multiple access (CSMA)
protocol. Xu et al. [192] discussed a multi-channel version
of G22.

Liu et al. [106] discussed a common control channel
assignment problem for cognitive radios, and proposed us-
ing

∑
j� i � c j=ci for the payo� function so that every player

chooses the same channel. This game is similar to the con-
sensus game G8.

11. Channel Assignment to Enhance Throughput in
Collision Channels

Channels can be viewed as common resources in the conges-
tion model introduced in Sect. 3.2.4. In general, throughput
when using a channel depends only on the number of sta-
tions that select the relevant channel. A CG formulation is
thus frequently used for channel selection problems. Alt-
man et al. [10] formulated a multi-channel selection game
in a single collision domain as a CG. Based on a CG formu-
lation, channel selections by secondary stations were dis-
cussed in [80], [188]. A channel selection problem in multi-
ple collision domains was discussed in [191]. Iellamo et al.
[78] used numerically evaluated successful access probabil-
ities depending on the number of stations in CSMA/CA as
payo� functions.

Here, we discuss channel selection problems in inter-
ference graph (I,E), where each node i ∈ I attempts to
adjust its channel ci to maximize its successful access prob-
ability or throughput.

11.1 Slotted ALOHA

Consider collision channels shared using slotted ALOHA.
Each node i adjusts its channel to avoid simultaneous trans-
missions on the same channel because these result in col-
lisions. In this case, when one node exclusively chooses a
channel, the node can transmit without collisions. Thus, the
following payo� function captures the benefit of nodes:

u23i(c) �

⎧⎪⎪⎨⎪⎪⎩1 if |Ici
i | = 0,

0 otherwise.
(54)

G23 is a singleton CG on graphs, and Thomas et al. [169]
showed that G23 is an OPG†.

Consider that each node has a transmission probability
Xi (0 < Xi < 1). Chen and Huang [38] proposed using the
logarithm of successful access probability,

†There is another simple proof of this based on the fact that
G23 is equivalent to G26 when setting Xi = 1 for every i.

u24i(c) � log
[
Xi
∏

j∈Ici
i

(1 − Xj)
]

(55)

and proved that G24 is a WPG. Here, we provide a di� erent
proof. When we consider

u25i(c) � − log(1 − Xi) · u24i(c) (56)

= − log(1 − Xi) log
[
Xi
∏

j� i(1 − Xj)
�c j=ci �i j∈E

]
= − log(1 − Xi) log(Xi)

− log(1 − Xi)
∑

j� i � c j=ci � i j∈E log(1 − Xj),

G25 is a BSI game with wi j(ci, c j) = − log(1 − Xi) log(1 −
Xj) � c j=ci � i j∈E. Thus, G24 is a WPG and, by Theorem 11,
G26 with payo�

u26i(c) � Xi
∏

j∈Ici
i (c)(1 − Xj). (57)

is an OPG. Chen and Huang [41] further discussed G26
with player-specific constants and proved that the game is
an OPG.

Before concluding this section, we would like to point
out the relationship between G24 and CGs. When we as-
sume an identical transmission probability Xi = X for every
i, we get

u24i(c) = log(X) + log(1 − X)
∑

j� i � c j=ci � i j∈E, (58)

i.e., G24 is a CG on graphs.

11.2 Random Backo�

Let the backo� time of player i be denoted by � i ∈ [1, � max],
where � max represents the backo� window size. The proba-
bility to acquire channel access is given by

u27i(c) � Pr

⎧⎪⎪⎨⎪⎪⎩� i < min
j∈Ici

i

{� j}
⎫⎪⎪⎬⎪⎪⎭

=
� max∑
� =1

1
� max

(
� max − �

� max

)∑
j� i �c j=ci

. (59)

G27 is a singleton CG, and thus is an EPG. Furthermore,
G28 with

u28i(c) � lim
� max→∞

u27i(c) =
1

1 +
∑

j� i � c j=ci

(60)

is also a singleton CG.
Chen and Huang [39] showed that G27 with player-

specific constants is an OPG. They [41] further discussed
G27 and G28 on graphs with player-specific constants, and
proved that these are OPGs according to the proof provided
in [120]. Xu et al. [194] further discussed the game under
fading channels.

Chen and Huang [41] generalized G28 to G29, whose
payo� function is a generalized throughput

u29i(c) �
wi∑
j wj

, (61)
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where wi (> 0) represents the channel-sharing weight for
player i. Du et al. [54] further discussed this kind of game.

For the TX-RX pair model shown in Fig. 1(b), Canales
and Gállego [26] proposed using the following network
throughput as a result of joint transmission power and chan-
nel assignment as potential:

∑
i

Bci

1 +
∑

j� i � Gi j p j>T � c j=ci

log2

(
1 +

Gii pi

N

)
, (62)

where Gi j � G ji, Bci is the bandwidth of channel ci, and T is
the power threshold of interference. Since (62) is too com-
plex, it may be di� cult to derive simple payo� functions.
Thus, Canales and Gállego proposed using payo� functions
of the form of a WLU (23). Note that the evaluation of the
WLU of (62) requires the impact of joint assignment on the
throughput of neighboring nodes.

12. Transmission Probability Adjustment for the
Multiple-Access Collision Channel
(Slotted ALOHA)

Consider a collision channel shared using slotted ALOHA.
Each node i adjusts its transmission probability xi ∈ [0, 1] to
maximize the following successful access probability (mi-
nus the cost):

u30i(xi, x−i) � xi
∏

j� i(1 − x j) − costi(xi). (63)

This is a well-known payo� function. Further discussion
can be found in [167]. Because (63) satisfies (8), G30 �
(I, ([0, 1]), (u30i)) is an EPG with potential

� 30(x) = −
∏

i(1 − xi) −
∑

i costi(xi). (64)

Candogan et al. [28] showed that G30 in stochastic channel
model, where each player adjusts his/her transmission prob-
ability based on the channel state, is a WPG. Cohen et al.
[45] discussed a multi-channel version of G30. They also
discussed G30 on graphs [46].

For this kind of transmission probability adjustment to
satisfy

∑
xi < 1, the cost function costi(x) =

�

∑
i xi>1 needs

to be used [50]. Because this cost function is a coordination
function, a game with this cost function is still an EPG.

13. Transmission Power Assignment to Enhance
Throughput in Multiple-Access Channel

Here, we discuss power control problems in multiple-access
channels, as shown in Fig. 1(a), where each TX attempts to
adjust its transmission power level to maximize its through-
put. For a summary of transmission power control, we re-
fer to [43]. Note that Saraydar et al. [153] applied a game-
theoretic approach to an uplink transmission power control
problem in a CDMA system. The relation between poten-
tial games and transmission power control to achieve target
SINR or target throughput has been discussed in [133].

Alpcan et al. [7] formulated uplink transmission power

control in a single-cell CDMA as the game G31 �
(I, (Pi), (u31i)), where Pi � { pi | 0 < Pi,min ≤ pi ≤ Pi,max },
Pi,min is the minimum transmission power, and Pi,max is the
maximum transmission power. In this game, each TX i ∈ I
adjusts its transmission power pi ∈ Pi to maximize its data
rate (throughput), which is assumed to be proportional to
the Shannon capacity, minus the cost of transmission power,
i.e.,

u31i(pi, p−i) � log

(
1 + S

Gi pi

N +
∑

j� i G j p j

)
− � i pi, (65)

where S (> 1) is the spreading gain and � i is a positive real
number. The cost function −� i pi is used to avoid an ine� -
cient Nash equilibrium, where all TXs choose the maximum
transmission power. All TXs choose this power because
BR(p−i) is the maximum transmission power for every TX
when the cost function is not used [7], [153].

Alpcan et al. [7] proved the existence and uniqueness
of a Nash equilibrium in the game, and Neel [134, §5.8.3.1]
showed that this game is not an EPG because (8) does not
hold. Note that Neel et al. [132] was the first to apply the
potential game approach to this type of power control.

Instead of G31, Fattahi and Paganini [60] proposed set-
ting S = 1 in G31, i.e.,

u32i(p) � log

(
1 +

Gi pi

N +
∑

j� i G j p j

)
− costi(pi) (66)

= log
(
N +

∑
i Gi pi

)
− log

(
N +

∑
j� i G j p j

)
− costi(pi),

where costi : Pi → R is a non-decreasing convex cost
function. Since u32i(p) is a linear combination of a co-
ordination function log(

∑
i Gi pi + 	 2), a dummy function

log(
∑

j� i G j p j + 	 2), and a self-motivated function costi(pi),
G32 � (I, (Pi), (u32i)) is an EPG with potential

� 32(p) = log
(
N +

∑
i Gi pi

)
−
∑

i costi(pi). (67)

Because � 32(p) is continuously di� erentiable and
strictly concave, by Theorem 3, there is a unique maximizer
for the potential, and unilateral improvement dynamics is
guaranteed to converge to a unique Nash equilibrium, which
is the maximizer of the potential on strategy space

∏
i Pi.

Kenan et al. [83] discussed G32 over time-varying channels.
Neel [134, §5.8.3.1] approximated (65) by

u33i(p) � log

(
S

Gi pi

N +
∑

j� i G j p j

)
− costi(pi), (68)

and showed that G33 � (I, (Pi), (u33i)) is an EPG with
potential � 33(p) =

∑
i(log pi − costi(pi)). Candogan et al.

[29] applied G33 to multi-cell CDMA systems, and verified
that the modified game is an EPG with a unique Nash equi-
librium by applying Theorem 3. A more general form of
payo� functions of SINR was discussed in [65].

13.1 Multi-Channel Systems

A transmission power control gameG32 with multiple chan-
nels was discussed in [73], [81], [144]. Let the set of chan-
nels be denoted by C. Each TX i ∈ I transmits through a
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subset of C to maximize the aggregated capacity

∑
c∈C

log

(
1 +

Gi,c pi,c

Nc +
∑

j� i G j,c p j,c

)
(69)

by adjusting the transmission power vector (pi,1, . . . ,pi,|C|).
This game is an EPG with potential

∑
c∈C log

(
Nc +

∑
i Gi,c

pi,c
)
. Mertikopoulos et al. [124] further discussed the game

under fading channels. Note that multi-channel transmis-
sion power assignment problems can be seen as joint trans-
mission power and channel assignment problems introduced
in Sect. 9 because a zero transmission power level means
that the relevant channel has not been assigned [145].

Note that [144] also discussed BS selection, and fur-
ther discussion can be found in [75]. The joint transmis-
sion power and bandwidth assignment problem for relay
networks was discussed in [3]. Primary-secondary scenario
[49] and heterogeneous network scenario [101], [181], [204]
were also discussed.

13.2 Precoding

Closely related problems to the power control problems dis-
cussed above are found in precoding schemes for multiple-
input multiple-output (MIMO) multiple-access channels.
The instantaneous mutual information of TX i, assuming
that multiuser interference can be modeled as a Gaussian
random variable, is expressed as

B log2

∣∣∣IMr + 
 HiQiH
H
i + 


∑
j� i H jQ jH

H
j

∣∣∣
− B log2

∣∣∣IMr + 

∑

j� i H jQ jH
H
j

∣∣∣ , (70)

where 
 = 1/N, Hi ∈ CNr×Nt is the channel matrix, HH
i is the

Hermitian transpose of Hi, Qi is a covariance matrix of input
signal, Mt is the number of antennas at every TX, and Mr is
the number of antennas at a single RX. Belmega et al. [18]
discussed a game where an input covariance matrix Qi is
adjusted. Concurrently, Zhong et al. [211] discussed a game
where a precoding matrix is adjusted. Since Qi is calculated
from a precoding matrix, these games are equivalent.

Since (70) is a coordination-dummy function, this
game is an EPG with the system’s achievable sum-rate as
potential. This game was further discussed in [92, Sec-
tion 8]. Energy e� ciency [213], primary-secondary scenario
[212], and relay selection [214] were also discussed. Joint
precoding and AP selection in multi-carrier system was dis-
cussed in [111].

14. Transmission Power Assignment Maintaining Con-
nectivity (Topology Control)

The primary goal of topology control [152] is to adjust
transmission power to maintain network connectivity while
reducing energy consumption to extend network lifetime
and/or reducing interference to enhance throughput.

Komali et al. [84] formulated the topology control
problem in the TX network model shown in Fig. 1(c) as

G34 � (I, (Pi), (u34i)) with Pi = [0, Pi,max] and

u34i(p) � � fi(p) − pi, (71)

where � ≥ maxi{Pi,max}, and fi(p) is the number of TXs
with whom TX i establishes (possibly over multiple hops)
a communication path using bidirectional links. Note that
fi(p′i , p−i) ≥ fi(pi, p−i) when p′i > pi. This game has been
shown to be an OPG with

� 34(p) = �
∑

i

fi(p) −
∑

i

pi. (72)

Note that the mathematical representation of fi(p) using
connectivity matrix [201] was first proposed in [127].

Komali et al. [85] also discussed interference reduction
through channel assignment, which is seen as a combina-
tion of G14 and a channel assignment version of G34. They
further discussed the impact of the amount of knowledge re-
garding the network on the spectral e� ciency [86].

Chu and Sethu [44] considered battery-operated sta-
tions and formulated transmission power control to prolong
network lifetime while maintaining connectivity as an OPG.
Similar approaches can be found in [69], and the joint as-
signment of transmission power and channels was discussed
in [70].

Liu et al. [103], [104] formulated measures for trans-
mission power and sensing range adjustment to enhance
energy e� ciency while maintaining sensor coverage as an
OPG.

15. Flow and Congestion Control in the Fluid Network
Model

Başar et al. [6], [17] formulated a flow and congestion con-
trol game, where each user i adjusts the amount of tra� c
flow ri to enhance

u35i(r) � � i log(1 + ri) − � ri −
1

capacity −
∑

i ri
,

(73)

where 1/ (capacity −
∑

i ri) represents the commodity-link
cost of congestion. Because (73) is a combination of self-
motivated and coordination functions, a gameG35 with pay-
o� function u35i(r) is an EPG [8], [171] with

� 35(r) =
∑

i

(
� i log(1 + ri) − � ri

)
− 1

capacity −
∑

i ri
.

(74)

The learning process of this game was further discussed by
Scutari et al. [155]. Other payo� functions for flow control
were discussed in [58], [100].

16. Arrival Rate Control for an M/M/1 Queue

Douligeris and Mazumdar [52], and Zhang and Douligeris
[205] introduced an M/M/1 queuing game G36 �
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(I, (� i), (u36i)), where each user i transmits packets to a
single server at departure rate µ and adjusts the arrival rate
� i to maximize the “power” [113], which is defined as the
throughput � i divided by the delay µ −

∑
i � i, i.e.,

u36i(λ) � � � i
i

⎛⎜⎜⎜⎜⎜⎝µ −∑
i

� i

⎞⎟⎟⎟⎟⎟⎠ , (75)

where � i (> 0) is a factor that controls the trade-o� between
throughput and delay. Note that this game is a Cournot game
(see (5)) when � i = 1 for every i.

Gai et al. [62] proved that G36 is an OPG. Here, we
provide a di� erent proof. Because a game with payo� func-
tion u37i(λ) = � i log(� i)+ log

(
µ −

∑
i � i

)
is an EPG, by The-

orem 11, (I, (� i), (exp(u37i))) = (I, (� i), (u36i)) = G36 is
an OPG.

17. Location Update for Mobile Nodes

17.1 Connectivity

Marden et al. [114] pointed out that the sensor deployment
problem (see [34] and references therein), where each mo-
bile node i updates its location ri ∈ R2 to forward data from
immobile sources to immobile destinations, can be formu-
lated as an EPG. Since the required transmission power to
an adjacent node j ∈ Ii is proportional to the square of
the propagation distance, ‖ri − ri‖, in a free-space propa-
gation environment, minimizing the total required transmis-
sion power problem is formulated as a maximization prob-
lem with global objective

� 38(r) � −
∑

i

∑
j∈Ii

‖ri − r j‖2

2
. (76)

If

u38i(r) = −
∑
j∈Ii

‖ri − r j‖2 (77)

is used as the payo� function of node i, G38 �
(I, (R2), (u38i)) is equivalent to the consensus game G8.

17.2 Coverage

A sensor coverage problem is formulated as a maximization
problem with global objective in continuous form � 39(s)
[34]

� 39(s) �
∫

�
R(r)

⎡⎢⎢⎢⎢⎢⎣1 −∏
i

(1 − 
 i(r, si))

⎤⎥⎥⎥⎥⎥⎦ dr, (78)

or in discrete form [128]

� 40(s) �
∑

r

R(r)

⎡⎢⎢⎢⎢⎢⎣1 −∏
i

(1 − 
 i(r, si))

⎤⎥⎥⎥⎥⎥⎦ , (79)

where � ⊂ R2 is the specific region to be monitored,

R : � → R+ is an event density function or value function
that indicates the probability density of an event occurring
at point r ∈ � , 
 i : � × � → [0, 1] is the probability of sen-
sor i to detect an event occurring at r ∈ � , and si ∈ � is the
location of sensor i. For a summary of coverage problems,
we refer the interested reader to [32], [33].

Arslan et al. [13] discussed a game where each mobile
sensor i updates its location si ∈ � , treated � 40(s) as poten-
tial, and proposed assigning a WLU to each sensor, i.e.,

u40i(s) =
∑

r

R(r) 
 i(r, si)
∏
j� i

(1 − 
 j(r, s j)), (80)

where 
 i(r, si)
∏

j� i(1−
 j(r, s j)) corresponds to the probabil-
ity that sensor i detects an event occurring at r alone. Further
discussion can be found in [114]. We would like to note that
G40 � (I, (� ), (u40i)) has a similar expression with G30.
In the same manner in G40, Dürr et al. [57] treated � 39(s)
as potential and proposed assigning a WLU

u39i(s) =
∫

�
R(r) 
 i(r, si)

⎡⎢⎢⎢⎢⎢⎢⎣
∏
j� i

(1 − 
 j(r, s j))

⎤⎥⎥⎥⎥⎥⎥⎦ dr. (81)

Zhu and Martı́nez [215] considered mobile sensors
with a directional sensing area. Each mobile sensor updates
its location and direction. The reward from a target is fairly
allocated to sensors covering the target.

Arsie et al. [12] considered a game where each node
i attempts to maximize the expected value of the reward.
Here, each node i receives the reward if node i is the first to
reach point r, and the value of the reward is the time until
the second node arrives, i.e.,

u41i(s) �
∫

�
R(r) max

{
0, min

j� i
‖r − s j‖ − ‖r − si‖

}
dr.

(82)

G41 � (I, (� ), (u41i)) was proved to be an EPG.

18. Channel Assignment to Enhance Coverage for Im-
mobile Sensors

Ai et al. [2] formulated a time slot assignment problem for
immobile sensors, which is equivalent to a channel alloca-
tion problem, as G42 � (I, (Ci), (u42i)), where each sensor
i ∈ I selects a slot ci ∈ Ci � {1, . . . ,K} to maximize the
area covered only by sensor i, i.e.,

u42i(c) �
∣∣∣∣∣Si \

⋃
j� i

c j=ci

S j

∣∣∣∣∣ , (83)

where Si is the sensing area covered by sensor i. Game G42
was proved to be an EPG with potential

� 42(c) =
K∑

k=1

∣∣∣∣∣⋃ i∈I
ci=k
Si

∣∣∣∣∣ , (84)

where � (c)/ K corresponds to the average coverage.
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To show the close relationship between the payo� func-
tions (63) in the slotted ALOHA game G30 and (81) in the
coverage game G39, we provide di� erent expressions. Us-
ing 
 i(r) �

� r∈Si , we get

u42i(c) =
∫


 i(r)
∏
j� i

(1 − 
 j(r)
� c j=ci ) dr, (85)

where the surface integral is taken over the whole area.
Wang et al. [180] further discussed this problem.

Song et al. [164] applied the coverage game to camera
networks. Ding et al. [51] discussed a pan-tilt-zoom (PTZ)
camera network to track multiple targets. Another potential
game-theoretic PTZ camera control scheme was proposed
in [72], motivated by natural environmental monitoring. Di-
rectional sensors were discussed in [95]. The form of payo�
functions is similar to (80).

Until now, each immobile sensor was assumed to re-
ceive a payo� when it covered a target alone. Yen et al.
[197] discussed a game where each sensor receives a pay-
o� when the number of sensors covering a target is smaller
than or equal to the allowable number. Since this game falls
within a class of CGs, it is also an EPG.

19. Conclusions

We have provided a comprehensive survey of potential game
approaches to wireless networks, including channel assign-
ment problems and transmission power assignment prob-
lems. Although there are a variety of payo� functions that
have been proven to have potential, there are some represen-
tative forms, e.g., BSI games and congestion games, and we
have shown the relations between representative forms and
individual payo� functions. We hope the relations shown in
this paper will provide insights useful in designing wireless
technologies.

Other problems that have been formulated in terms of
potential games are found in routing [9], [97], [156], [157],
[186], [203], BS/AP selection [98], [99], [112], [161], [172],
cooperative transmissions [4], [139], secrecy rate maximiza-
tion [11], code design for radar [146], broadcasting [35],
spectrum market [87], network coding [115], [147], [148],
data cashing [94], social networks [40], computation of-
floading [42], localization [79], and demand-side manage-
ment in smart grids [77], [183].

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant
Numbers 24360149, 15K06062. The author would like to
acknowledge Dr. Takeshi Hatanaka at Tokyo Institute of
Technology for his insightful comments on cooperative con-
trol and PTZ camera control. The author acknowledges
Dr. I Wayan Mustika at Universitas Gadjah Mada, and Dr.
Masahiro Morikura and Dr. Takayuki Nishio at Kyoto Uni-
versity for their comments.

References
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